Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 569–573 | Cite as

A Phenomenological Model of Structural Phase Transitions in RbDy(Wo4)2

  • S. V. Pavlov
Condensed Matter Physics


A phenomenological model of structural phase transitions in double rubidium–dysprosium tungstate is proposed. The model is constructed by equivariant catastrophe theory methods. The temperature dependence of the heat capacity near the phase transitions at temperatures T1 = 9 K and T2 = 4.9 K was calculated. Comparison with the experimental data shows a satisfactory qualitative agreement. In terms of the proposed model, the low-temperature phase transition can be interpreted as isomorphic.


double rubidium–dysprosium tungstate phase transitions phenomenological model catastrophe theory equivariant vector fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. D’yakonov, V. I. Markovich, V. L. Kovarskii, A. V. Markovich, M. Borowiec, A. Endzheichak, and G. Szymczak, Phys. Solid State 40, 2017 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    M. T. Borowiec, V. P. Dyakonov, V. I. Jedrzejczak, et al., J. Low Temp. Phys. 110, 1003 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    M. T. Borowiec, V. Dyakonov, V. Kamenev, et al., Acta Phys. Pol. A 98, 71 (1998).CrossRefGoogle Scholar
  4. 4.
    V. P. D’yakonov, V. I. Markovich, V. L. Kovarskii, A. V. Markovich, M. Borowiec, A. Jendrzejczak, and H. Szymczak, Phys. Solid State 41, 440 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. D’yakonov, E. E. Zubov, A. A. Pavlyuk, M. T. Borowiec, and H. Szymczak, Phys. Solid State 41, 605 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    E. N. Khatsko, A. S. Cherny, and A. I. Rykova, Low Temp. Phys. 29, 1009 (2003). doi 10.1063/1.1630717ADSCrossRefGoogle Scholar
  7. 7.
    Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982).Google Scholar
  8. 8.
    V. I. Arnold, Russ. Math. Surv. 30 (5), 1 (1975).CrossRefGoogle Scholar
  9. 9.
    V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1: The Classification of Critical Sets, Caustics and Wave Fronts (Nauka, Moscow, 1982; Birkhàuser, 1985)zbMATHGoogle Scholar
  10. 10.
    T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Pitman, 1978).zbMATHGoogle Scholar
  11. 11.
    R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, 1981).zbMATHGoogle Scholar
  12. 12.
    V. I. Arnol’d, Catastrophe Theory (Springer, 2004).zbMATHGoogle Scholar
  13. 13.
    T. M. Izotova, A. P. Shamshin, and E. V. Matyushkin, in Proc. IVTN-2004 Session “Computer Applications in Scientific Researches,” Moscow, Russia, 2004, p. 56. Scholar
  14. 14.
    S. V. Pavlov, Moscow Univ. Phys. Bull. 71, 508 (2016). doi doi 10.3103/S0027134916050155ADSCrossRefGoogle Scholar
  15. 15.
    E. I. Kut’in, V. L. Lorman, and S. V. Pavlov, Sov. Phys. Usp. 34, 497 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Pavlov, Catastrophe Theory Methods in the Analysis of Phase Transitions (Mosk. Gos. Univ., Moscow, 1993).zbMATHGoogle Scholar
  17. 17.
    S. V. Pavlov, Moscow Univ. Phys. Bull. 71, 202 (2016). doi doi 10.3103/S0027134916020077ADSCrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Fizmatlit, Moscow, 2002).zbMATHGoogle Scholar
  19. 19.
    S. Galam and D. M. Hatch, Phys. Rev. B 34, 7813 (1986). doi doi 10.1103/PhysRevB.34.7813ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations