Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 563–568 | Cite as

The Formation of Helium Bubbles in Silicon Surface Layers via Plasma Immersion Ion Implantation

  • A. A. Lomov
  • Yu. M. Chesnokov
  • A. P. Oreshko
Condensed Matter Physics


The surface layers of single-crystal silicon Si(001) substrates subjected to plasma-immersion implantation with 2- and 5-keV helium ions to a dose of 5 × 1017 cm–2 were probed via grazing incidence small-angle X-ray scattering and transmission electron microscopy. A surface layer formed by helium ions was found to possess a multilayer structure, wherein the upper layer is amorphous silicon, being on top of a sublayer with helium bubbles and a sublayer with a disturbed crystal structure. The in-depth electron density distribution, as well as the concentration and pore-size distribution, were established. The average pore sizes of bubbles at the above implantation energies are 4 nm and 8 nm, respectively.


grazing incidence small-angle X-ray scattering small-angle scattering silicon ion implantation helium bubbles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Farrell, Radiat. Eff. 53, 175 (1980). doi 10.1080/00337578008207114CrossRefGoogle Scholar
  2. 2.
    A. Van Veen, C. C. Griffioen, and J. H. Evans, MRS Proc. 107, 449 (1987). doi 10.1557/PROC-107-449CrossRefGoogle Scholar
  3. 3.
    Sh. Sh. Ibragimov and V. F. Reutov, SU Inventor’s Certificate No. 1282757 (1983).Google Scholar
  4. 4.
    V. Raineri, P. G. Fallica, G. Percolla, et al., J. Appl. Phys. 78, 3727 (1995). doi 10.1063/1.359953ADSCrossRefGoogle Scholar
  5. 5.
    B. S. Doyle and B. Roberds, US Patent No. 6740913 (2004).Google Scholar
  6. 6.
    A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, 2000).Google Scholar
  7. 7.
    A. V. Myakon’kikh, A. E. Rogozhin, K. V. Rudenko, and V. F. Lukichev, Russ. Microelectron. 42, 246 (2013). doi 10.1134/S1063739713040033CrossRefGoogle Scholar
  8. 8.
    J. M. Chesnokov, A. L. Vasiliev, V. F. Lukichev, and K. V. Rudenko, J. Phys: Conf. Ser. 471, 012049 (2013). doi 10.1088/1742-6596/471/1/012049Google Scholar
  9. 9.
    A. A. Lomov, A. V. Myakonkikh, K. V. Rudenko, and Yu. M. Chesnokov, Crystallogr. Rep. 59, 331 (2014). doi 10.1134/S1063774514020138ADSCrossRefGoogle Scholar
  10. 10.
    P. Dubcek, O. Milat, B. Pivac, et al., Mater. Sci. Eng. B 71, 82 (2000). doi 10.1016/S0921-5107(99)00353-0CrossRefGoogle Scholar
  11. 11.
    A. A. Orlikovsky, K. V. Rudenko, and S. N. Averkin, High Energy Chem. 40, 182 (2006). doi 10.1134/S0018143906030106CrossRefGoogle Scholar
  12. 12.
    A. A. Lomov, A. V. Myakon’kikh, A. P. Oreshko, and A. A. Shemukhin, Crystallogr. Rep. 61, 173 (2016). doi 10.1134/S1063774516020127ADSCrossRefGoogle Scholar
  13. 13.
    P. R. Desautels, M. P. Bradley, J. T. Steenkamp, and J. Mantyka, Phys. Status Solidi (a) 206, 985 (2009). doi 10.1002/pssa.200881285ADSCrossRefGoogle Scholar
  14. 14.
    V. Raineri, S. Coffa, E. Szilagyi, J. Gyulai, and E. Rimini, Phys. Rev. B 61, 937 (2000). doi 10.1103/Phys-RevB.61.937ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Chuev, I. A. Subbotin, E. M. Pashaev, V. V. Kvardakov, and B. A. Aronzon, JETP Lett. 85, 17 (2007). doi 10.1134/S0021364007010043ADSCrossRefGoogle Scholar
  16. 16. Scholar
  17. 17.
    A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, 1955).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Lomov
    • 1
  • Yu. M. Chesnokov
    • 2
  • A. P. Oreshko
    • 3
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Research Center Kurchatov InstituteMoscowRussia
  3. 3.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations