Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 550–557 | Cite as

An Ab Initio Study of the Structural and Electronic Properties of the Low-Defect TiC(110) Surface Simulating Oxygen Adsorption after Exposure to Laser Plasma

  • V. V. Ilyasov
  • D. K. Pham
  • A. V. Ilyasov
  • T. I. Grebenok
  • Chuong V. Nguyen
Condensed Matter Physics
  • 13 Downloads

Abstract

An ab initio simulation of the adsorption of atomic oxygen on the low-defect titanium carbide (110) surface reconstructed by laser radiation was performed. The relaxed atomic structures of the (110) surface of the O/Ti x C y system with Ti and C vacancies observed during the thermal treatment were studied in terms of the density functional theory. DFT calculations of their structural, thermodynamic, and electronic properties were performed. The bond lengths and adsorption energies were determined for various reconstructions of the atomic structure of the O/Ti x C y (110) surface. The effects of the oxygen adatom on the band and electronic spectra of the O/Ti x C y (110) surface were studied. The effective charges on the titanium and carbon atoms surrounding the oxygen atom in various reconstructions were determined. The charge transfer from titanium to oxygen and carbon atoms was found, which is determined by the reconstruction of the local atomic and electronic structures and correlates with chemisorption processes. The potential mechanisms of laser nanostructuring of the titanium carbide surface were suggested.

Keywords

titanium carbide adsorption ab initio calculation surface defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961). https://doi.org/10.1016/0022-1902(61)80142-5CrossRefGoogle Scholar
  2. 2.
    S. Cardinal, A. Malchere, V. Garnier, et al., Int. J. Refract. Met. Hard Mater. 27, 521 (2009).CrossRefGoogle Scholar
  3. 3.
    X. Y. Ding, L. Luo, L. M. Huang, et al., J. Alloys Compd. 619, 704 (2015). https://doi.org/10.1016/j.jallcom.2014.08.242CrossRefGoogle Scholar
  4. 4.
    P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  5. 5.
    V. V. Ilyasov, K. D. Pham, O. M. Holodova, et al., Appl. Surf. Sci. 351, 433 (2015). https://doi.org/10.1016/j.apsusc.2015.05.146CrossRefGoogle Scholar
  6. 6.
    V. V. Ilyasov, K. D. Pham, G. E. Yalovega, et al., Surf. Sci. 649, 20 (2016). https:/doi.org/10.1016/j.susc.2016.01.021ADSCrossRefGoogle Scholar
  7. 7.
    B. Jiang, N. Hou, S. Huang, et al., J. Solid State Chem. 204, 1 (2013). https://doi.org/10.1016/j.jssc.2013.05.009ADSCrossRefGoogle Scholar
  8. 8.
    M. Kaminsky, R. Nielsen, and P. Zschack, J. Vac. Sci. Technol. 21, 903 (1982). https://doi.org/10.1116/1.571850ADSCrossRefGoogle Scholar
  9. 9.
    H. Kuramochi, K. Takami, A. Saito, et al., Appl. Phys. Lett. 75, 3784 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    A. Lekatou, A. E. Karantzalis, A. Evangelou, et al., Mater. Des. 65, 1121 (2015). https://doi.org/10.1016/j.matdes.2014.08.040CrossRefGoogle Scholar
  11. 11.
    P.-O. Löwdin, Adv. Quantum Chem. 5, 185 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Kumashiro, Electric Refractory Materials (CRC Press, 2000).CrossRefGoogle Scholar
  13. 13.
    Y. Pei, C. Chen, K. Shaha, et al., Acta Mater. 56, 696 (2008).CrossRefGoogle Scholar
  14. 14.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136406 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    C. Ruberto and B. I. Lundqvist, Phys. Rev. B 75, 235438 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    L. Wang, L.-h. Fang, and J.-h. Gong, Trans. Nonferrous Met. Soc. China 22, 170 (2012). https://doi.org/10.1016/S1003-6326(11)61157-6CrossRefGoogle Scholar
  19. 19.
    Y. Yang, H. Lu, C. Yu, et al., J. Alloys Compd. 485, 542 (2009). https://doi.org/10.1016/j.jallcom.2009.06.023CrossRefGoogle Scholar
  20. 20.
    S. I. Mikolutskiy, V. Yu. Khomich, V. A. Shmakov, and V. A. Yamshchikov, Nanotechnol. Russ. 6, 733 (2011).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Ilyasov
    • 1
  • D. K. Pham
    • 1
  • A. V. Ilyasov
    • 1
  • T. I. Grebenok
    • 1
  • Chuong V. Nguyen
    • 2
    • 3
  1. 1.Department of PhysicsDon State Technical UniversityRostov on DonRussia
  2. 2.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  3. 3.Department of Materials Science and EngineeringLe Quy Don Technical UniversityHanoiVietnam

Personalised recommendations