Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 493–506 | Cite as

Investigations of the Transition Region between Galactic and Extragalactic Cosmic Rays with Arrays for Extensive Air-Shower Detection

Astronomy, Astrophysics, and Cosmology (Review)

Abstract

We discuss the results of cosmic-ray energy spectrum and mass composition studies obtained with arrays for extensive air-shower detection. An overview of ground arrays that perform such research and a brief description of methods of the primary particle characteristics recovery from experimental data are presented. A particular emphasis is given to the energy range of 1016–1018 eV, where a transition from galactic to extragalactic cosmic rays is expected. The array complex constructed in the Tunka Valley for the studies in this range is specifically considered.

Keywords

PCR CR EAS giant arrays Gamma Ray Observatory TAIGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Akimov, N. L. Grigorov, N. V. Gubin, et al., Izv. Akad. Nauk SSSR. Ser. Fiz. 35, 2434 (1971).Google Scholar
  2. 2.
    N. N. Kalmykov, G. V. Kulikov, and T. M. Roganova, in Model of the Space Environment, Ed. by M. I. Panasyuk and L. S. Novikov (KDU, Moscow, 2007), Vol. 1, p. 62.Google Scholar
  3. 3.
    E. G. Berezhko and L. T. Ksenofontov, J. Exp. Theor. Phys. 89, 391 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    N. N. Kalmykov and G. B. Khristiansen, J. Phys. G 21, 1279 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Ptuskin, S. I. Rogovaya, and V. N. Zirakashvili, presented at The 31st All-Russian Cosmic Ray Conf. (Mosk. Gos. Univ., Moscow, 2010).Google Scholar
  6. 6.
    Pierre Auger Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 586, 409 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    Pierre Auger Collab., arXiv:0906.2189 [astro-ph.HE].Google Scholar
  8. 8.
    H. Kawai, S. Yoshida, H. Yoshii, et al., Nucl. Phys. B, Proc. Suppl. 175–176, 221 (2008). doi 10.1016/j.nuclphysbps. 2007.11.002CrossRefGoogle Scholar
  9. 9.
    M. Yu. Zotov, O. E. Kalashev, and M. S. Pshirkov, Moscow Univ. Phys. Bull. 72, 144 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    J. Linsley, in Proc. 8th Int. Cosmic Ray Conf., Jaipur, India, 1963, Vol. 4, p. 77.ADSGoogle Scholar
  11. 11.
    M. Nagano and A. A. Watson, Rev. Mod. Phys. 72, 689 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    D. M. Edge, A. C. Evans, H. J. Garmston, et al., J. Phys. A 6, 1612 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Lawrence, R. J. O. Reid, and A. A. Watson, J. Phys. G 17, 733 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    M. M. Winn, J. Ulrichs, L. S. Peak, et al., J. Phys. G 12, 653 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    N. Chiba, K. Hashimoto, N. Hayashida, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 311, 338 (1992). http://www-akeno.icrr.u-tokyo.ac.jp/AGASA/.ADSCrossRefGoogle Scholar
  16. 16.
    AGASA Collab., Nucl. Phys. B, Proc. Suppl. 136, 18 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Bird, S. C. Corbato, H. U. Dai, et al., Astrophys. J. 424, 491 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    HiRes Collab., arXiv:0807.2814 [astro-ph].Google Scholar
  19. 19.
    HiRes Collab., Phys. Rev. Lett. 100, 101101 (2008).CrossRefGoogle Scholar
  20. 20.
    A. V. Glushkov, Phys. At. Nucl. 72, 85 (2009).CrossRefGoogle Scholar
  21. 21.
    Pierre Auger Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 586, 409 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    Pierre Auger Collab., arXiv:0906.2189 [astro-ph.HE].Google Scholar
  23. 23.
    http://www.telescopearray.org.Google Scholar
  24. 24.
    V. P. Artamonov, B. N. Afanas’ev, A. V. Glushkov, et al., Bull. Russ. Acad. Sci.: Phys. 58, 2016 (1994).Google Scholar
  25. 25.
    https://www.auger.org.Google Scholar
  26. 26.
    Pierre Auger Collab., Phys. Lett. B 685, 239 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    Pierre Auger Collab., arXiv:0906.2189 [astro-ph.HE].Google Scholar
  28. 28.
    Pierre Auger Collab., arXiv:1107.4809 [astro-ph.HE].Google Scholar
  29. 29.
    D. Heck and T. Pierog, Extensive Air Shower Simulation with CORSIKA: A User’s Guide (Karlsruher Institut für Technologie, 2017). https://web.ikp.kit.edu/corsika/usersguide/usersguide. pdf.Google Scholar
  30. 30.
    D. Kuempel, K. H. Kampert, and M. Risse, Astropart. Phys. 30, 167 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    H. Tokuno, Y. Tameda, M. Takeda, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 676, 54 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    T. Okuda, arXiv:1401.8109 [astro-ph.IM].Google Scholar
  33. 33.
    Telescope Array Collab., Nucl. Part. Phys. Proc. 273–275, 440 (2016).Google Scholar
  34. 34.
    http://taiga-experiment.info/wp-content/uploads/2015/02/prosin_ricap14.pdf.Google Scholar
  35. 35.
    A. A. Ivanov (Yakutsk Array Group), EPJ Web Conf. 53, 04003 (2013). doi 10.1051/epjconf/20135304003CrossRefGoogle Scholar
  36. 36.
    A. A. Ivanov, S. P. Knurenko, M. I. Pravdin, and I. E. Sleptsov, Moscow Univ. Phys. Bull. 65, 292 (2010). doi 10.3103/S0027134910040089ADSCrossRefGoogle Scholar
  37. 37.
    G. Clark, H. L. Bradt, M. La Pointe, et al., in Proc. 8th Int. Cosmic Ray Conf., Jaipur, India, 1963, Vol. 4, p. 65.ADSGoogle Scholar
  38. 38.
    L. G. Dedenko, A. V. Glushkov, S. P. Knurenko, I. T. Makarov, M. I. Pravdin, D. A. Podgrudkov, I. E. Sleptsov, T. M. Roganova, and G. F. Fedorova, JETP Lett. 90, 691 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    L. G. Dedenko, N. Inoue, D. A. Podgrudkov, T. M. Roganova, and G. F. Fedorova, Bull. Russ. Acad. Sci.: Phys. 73, 600 (2009).CrossRefGoogle Scholar
  40. 40.
    Telescope Array Collab., arXiv:1111.2507 [astroph. HE].Google Scholar
  41. 41.
    Pierre Auger Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 662, S106 (2012).Google Scholar
  42. 42.
    V. P. Egorova, A. V. Glushkov, A. A. Ivanov, et al., Nucl. Phys. B, Proc. Suppl. 136, 3 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    V. Berezinsky, Astropart. Phys. 53, 120 (2014). https://arxiv.org/pdf/1301.0914v2.pdf.ADSCrossRefGoogle Scholar
  44. 44.
    N. N. Kalmykov, L. A. Kuzmichev, G. V. Kulikov, V. V. Prosin, V. P. Sulakov, and Yu. A. Fomin, Moscow Univ. Phys. Bull. 65, 275 (2010). doi 10.3103/S0027134910040065ADSCrossRefGoogle Scholar
  45. 45.
    http://www-ik.fzk.de/KASCADE/KASCADE_welcome_ Grande.html.Google Scholar
  46. 46.
    Yu. A. Fomin, N. N. Kalmykov, G. B. Khristiansen, et al., J. Phys. G 22, 1839 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    http://icecube.wisc.edu.Google Scholar
  48. 48.
    IceCube Collab., Phys. Rev. D 88, 042004 (2013). doi 10.1103/PhysRevD.88.042004CrossRefGoogle Scholar
  49. 49.
    V. V. Prosin, S. F. Berezhnev, N. M. Budnev, et al., EPJ Web Conf. 121, 03004 (2016). doi 10.1051/epjconf/201612103004Google Scholar
  50. 50.
    G. B. Khristiansen, G. V. Kulikov, and Yu. A. Fomin, Cosmic Rays of Superhigh Energies (Karl Thiemig, München, 1980).Google Scholar
  51. 51.
    O. V. Vedeneev, G. K. Garipov, A. V. Igoshin, et al., Izv. Akad. Nauk, Ser. Fiz. 67, 1457 (2003).Google Scholar
  52. 52.
    J. R. Horandel, Astropart. Phys. 19, 193 (2003).ADSCrossRefGoogle Scholar
  53. 53.
    L. A. Kuzmichev, L. G. Sveshnikova, E. E. Korosteleva, et al., J. Phys.: Conf. Ser. 409, 012062 (2013). https://doi.org/10.1088/1742-6596/409/1/012062Google Scholar
  54. 54.
    N. N. Kalmykov, J. Cotzomi, V. P. Sulakov, and Yu. A. Fomin, Moscow Univ. Phys. Bull. 63, 359 (2008). doi 10.3103/S0027134908050111ADSCrossRefGoogle Scholar
  55. 55.
    N. N. Kalmykov, G. V. Kulikov, V. P. Sulakov, and Yu. A. Fomin, Moscow Univ. Phys. Bull. 66, 92 (2011). doi 10.3103/S0027134911010127ADSCrossRefGoogle Scholar
  56. 56.
    W. D. Apel, J. Arteaga, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 620, 202 (2010).ADSCrossRefGoogle Scholar
  57. 57.
    KASCADE Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 513, 490 (2003).ADSCrossRefGoogle Scholar
  58. 58.
    EAS-TOP Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 336, 310 (1993).CrossRefGoogle Scholar
  59. 59.
    J. R. Horandel, Astropart. Phys. 16, 245 (2002).ADSCrossRefGoogle Scholar
  60. 60.
    J. R. Horandel, Astropart. Phys. 19, 373 (2003).ADSCrossRefGoogle Scholar
  61. 61.
    KASCADE Collab., Astropart. Phys. 24, 467 (2006).CrossRefGoogle Scholar
  62. 62.
    KASCADE-Grande Collab., Astropart. Phys. 36, 183 (2012).CrossRefGoogle Scholar
  63. 63.
    G. Toma, W. D. Apel, J. C. Arteaga-Velázquez, et al., in Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, Brazil, 2013.Google Scholar
  64. 64.
    KASCADE Collab., Astropart. Phys. 24, 1 (2005). doi 10.1016/j.astropartphys.2005.04.001CrossRefGoogle Scholar
  65. 65.
    IceCube Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 700, 188 (2013).CrossRefGoogle Scholar
  66. 66.
    IceCube Collab., Astrophys. J. 765, 55 (2013). doi 10.1088/0004-637X/765/1/55ADSCrossRefGoogle Scholar
  67. 67.
    N. M. Budnev et al., J. Instrum. 9, C09021 (2014).CrossRefGoogle Scholar
  68. 68.
    S. F. Berezhnev, N. M. Budnev, A. L. Ivanova, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 732, 281 (2013).ADSCrossRefGoogle Scholar
  69. 69.
    R. Hiller, N. M. Budnev, et al., Phys. Procedia 61, 708 (2015).ADSCrossRefGoogle Scholar
  70. 70.
    S. F. Berezhnev, D. Besson, et al., in Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, Brazil, 2013. http://www.cbpf.br/~icrc2013/papers/icrc2013-0617.pdf.Google Scholar
  71. 71.
    S. F. Berezhnev, D. Besson, A. Ivanova, et al., in Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, Brazil, 2013. http://www.cbpf.br/~icrc2013/papers/icrc2013-0418.pdf.Google Scholar
  72. 72.
    N. M. Budnev, R. Vishnevskii, O. A. Gress, et al., in Proc. 30th All-Russian Cosmic Ray Conf., St. Petersburg, Russia, 2008, p. 45.Google Scholar
  73. 73.
    N. M. Budnev, R. V. Vasiliev, R. Wischnewski, O. A. Gress, T. I. Gress, E. E. Korosteleva, L. A. Kuzmichev, B. K. Lubsandorzhiev, Yu. V. Parfenov, L. V. Pan’-kov, P. G. Pokhil, V. V. Prosin, Yu. A. Semenei, D. V. Chernov, T. Schmidt, et al., Bull. Russ. Acad. Sci.: Phys. 69, 391 (2005).Google Scholar
  74. 74.
    V. V. Prosin et al., EPJ Web Conf. 99, 04002 (2015). https://doi.org/10.1051/epjconf/20159904002CrossRefGoogle Scholar
  75. 75.
    E. Korosteleva et al., Nucl. Phys. B, Proc. Suppl. 165, 74 (2007).ADSCrossRefGoogle Scholar
  76. 76.
    S. F. Berezhnev, N. M. Budnev, A. Chiavassa, et al., JPS Conf. Proc. 9, 010009 (2016). https://doi.org/10.7566/JPSCP.9.010009Google Scholar
  77. 77.
    L. G. Sveshnikova, L. A. Kuzmichev, E. E. Korosteleva, et al., Nucl. Phys. B, Proc. Suppl. 256–257, 218 (2014).CrossRefGoogle Scholar
  78. 78.
    S. Epimakhov, S. F. Berezhnev, N. M. Budnev, et al., in Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, Brazil, 2013. http://www.cbpf.br/~icrc2013/papers/icrc2013-0326.pdf.Google Scholar
  79. 79.
    N. M. Budnev, A. L. Ivanova, N. N. Kalmykov, L. A. Kuz’-michev, V. P. Sulakov, and Yu. A. Fomin, Moscow Univ. Phys. Bull. 69, 357 (2014). doi 10.3103/S0027134914040067ADSCrossRefGoogle Scholar
  80. 80.
    N. M. Budnev, A. L. Ivanova, N. N. Kalmykov, L. A. Kuzmichev, V. P. Sulakov, and Yu. A. Fomin, Moscow Univ. Phys. Bull. 70, 160 (2015). doi 10.3103/S0027134915020022ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • N. M. Budnev
    • 1
  • A. L. Ivanova
    • 1
  • N. N. Kalmykov
    • 2
  1. 1.Research Institute of Applied PhysicsIrkutsk State UniversityIrkutskRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations