Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 507–512 | Cite as

Application of R-Functions for the Solution of the Problem of Convection in the Mantle of the Earth

  • A. N. Bogolyubov
  • A. N. Groushinsky
  • M. I. Svetkin
Theoretical and Mathematical Physics


In this paper, the process of convection in the Earth’s mantle in the presence of a floating continent is considered. The model is a two-dimensional rectangular region of viscous thermally conducting fluid that obeys the equations of hydrodynamics. The method of Rvachev R-functions is used for the description of the problem geometry and the boundary conditions.


Earth’s mantle convection vorticity vector vector potential R-functions Galerkin method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Trubitsyn and V. V. Rykov, Russ. J. Earth Sci. 1, 1 (1998).CrossRefGoogle Scholar
  2. 2.
    V. V. Chervov, Vychisl. Tekhnol. 7 (1), 114 (2002).MathSciNetGoogle Scholar
  3. 3.
    V. P. Trubitsyn, Izv., Phys. Solid Earth 44, 1018 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    G. G. Chernykh et al., Vychisl. Tekhnol. 19 (5), 101 (2014).Google Scholar
  5. 5.
    V. L. Rvachev, R-Function: Theory and Certain Applications (Naukova Dumka, Kiev, 1982).zbMATHGoogle Scholar
  6. 6.
    V. F. Kravchenko and V. L. Rvachev, Boolean Logic, Atomic Functions, and Wavelets in Physical Applications (Fizmatlit, Moscow, 2006).zbMATHGoogle Scholar
  7. 7.
    V. F. Kravchenko and M. A. Basarab, Boolean Algebra and Approximation Methods in Boundary Problems of Electrodynamics (Fizmatlit, Moscow, 2004).zbMATHGoogle Scholar
  8. 8.
    K. V. Maksimenko-Sheiko, R-Functions in Mathematical Simulation of Geometric Objects and Physical Fields (Inst. Probl. Mashinostr. Nats. Akad. Nauk Ukr., Kharkiv, 2009).zbMATHGoogle Scholar
  9. 9.
    M. A. Basarab, Mat. Model. Chislennye Metody 1 (1), 18 (2014).Google Scholar
  10. 10.
    G. B. Udintsev, A. F. Beresnev, A. V. Kol’tsova, et al., Ukr. Antarkt. Zh., Nos. 10–11, 26 (2012).Google Scholar
  11. 11.
    Yu. N. Raznitsin et al., Dokl. Akad. Nauk 342, 354 (1995).Google Scholar
  12. 12.
    V. E. Khain and M. G. Lomize, Geotectonics with Basic Geodynamics (KDU, Moscow, 2005).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, 1987).zbMATHGoogle Scholar
  14. 14.
    V. L. Rvachev, Geometrical Applications of Boolean Logic (Tekhnika, Kiev, 1967).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. N. Bogolyubov
    • 1
  • A. N. Groushinsky
    • 2
  • M. I. Svetkin
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations