Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 587–590 | Cite as

The Effect of the Heavy-Hole Band on the Thermoelectric Figure-of-Merit of Heavily Doped p-Type Lead Telluride

  • N. I. Babenko
  • A. V. Dmitriev
Condensed Matter Physics

Abstract

The thermoelectric properties of heavily doped p-type PbTe have been theoretically studied in the temperature range from 300 to 900 K. The calculations are based on a three-band model of the PbTe electron energy spectrum taking into account the transport of electrons and light holes in the L-extrema and heavy holes in the Σ-extrema. The thermoelectric quantities turned out to be very sensitive to the parameters of the heavy-hole band. The best agreement with the experiment is reached at mhh = 5m0 and E = 0.5 eV, where all calculated thermoelectric quantities agree well with the available experimental data within the entire interval from 300 to 900 K. The calculation confirms a significant increase of the value of the thermoelectric figure-of-merit to ZT = 1.2 that has been recently observed experimentally in heavily doped p-PbTe samples. The maximum of ZT corresponds to the temperature at which the band edges of light and heavy holes coincide in energy so that the steepest singularity in the density of states in the valence band is formed.

Keywords

PbTe lead telluride thermoelectric properties three-band model Boltzmann equation figure-of-merit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ishida, T, Yamada, D. Cao, et al., J. Appl. Phys. 106, 023718 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    J. Andrulakis, I. Todorov, D.-Y. Chung, et al., Phys. Rev. B 82, 115209 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Pei, A. LaLonde, S. Iwanga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).CrossRefGoogle Scholar
  4. 4.
    N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon, Oxford, 1936).Google Scholar
  5. 5.
    N. I. Babenko and A. V. Dmitriev, Moscow Univ. Phys. Bull. (72, 582 (2017)).Google Scholar
  6. 6.
    A. V. Dmitriev and E. S. Tkacheva, J. Electron. Mater. 43, 1280 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Dmitriev and E. S. Tkacheva, Moscow Univ. Phys. Bull. 69, 243 (2014). https://doi.org/10.3103/S0027134914030072ADSCrossRefGoogle Scholar
  8. 8.
    H. Sitter, K. Lishka, and H. Heinrich, Phys. Rev. B 16, 680 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow-Gap Semiconductors (Springer, Berlin, 1983).CrossRefGoogle Scholar
  10. 10.
    Z. Gibbs, H. Kim, H. Wang, et al., Appl. Phys. Lett. 103, 262109 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    R. N. Tauber, A. A. Machonis, and I. B. Cadoff, J. Appl. Phys. 37, 4855 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Pei, X. Shi, A. LaLonde, et al., Nature 473, 66 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations