Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 582–586 | Cite as

Thermoelectric Figure-of-Merit Calculations in Heavily Doped p-Type Lead Telluride

  • N. I. Babenko
  • A. V. Dmitriev
Condensed Matter Physics

Abstract

The thermoelectric properties of heavily doped p-PbTe have been studied theoretically in the temperature range from 300 to 900 K. Calculations are based on a three-band model of the PbTe spectrum that takes the transport of electrons and light holes into account in the L-extrema and heavy holes in the Σ-extrema. On the basis of the Boltzmann kinetic equation, a complete set of relevant kinetic characteristics, including the electrical and thermal conductivities, the Seebeck coefficient, and the thermoelectric figure-of-merit ZT has been calculated. All calculated thermoelectric quantities agree well with the available experimental data in the entire temperature interval from 300 to 900 K. The calculation reproduces a significant increase in the thermoelectric figure-of-merit to the value ZT = 1.2 which has been recently detected experimentally in heavily doped p-PbTe samples.

Keywords

PbTe lead telluride thermoelectric properties three-band model Boltzmann equation figure-of-merit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
  2. 2.
    H. Ohita, Mater. Today 10, 44 (2007).CrossRefGoogle Scholar
  3. 3.
    A. V. Dmitriev and I. P. Zvyagin, Phys.-Usp. 53, 789 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. Ishida, T, Yamada, D. Cao, et al., J. Appl. Phys. 106, 023718 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    J. Andrulakis, I. Todorov, D.-Y. Chung, et al., Phys. Rev. B 82, 115209 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Pei, A. LaLonde, S. Iwanga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Sitter, K. Lishka, and H. Heinrich, Phys. Rev. B 16, 680 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon, Oxford, 1936)Google Scholar
  9. 9.
    A. V. Dmitriev and E. S. Tkacheva, J. Electron. Mater. 43, 1280 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Dmitriev and E. S. Tkacheva, Moscow Univ. Phys. Bull. 69, 243 (2014). https://doi.org/10.3103/S0027134914030072ADSCrossRefGoogle Scholar
  11. 11.
    N. I. Babenko and A. V. Dmitriev, Moscow Univ. Phys. Bull. (72), 587 (2017)).Google Scholar
  12. 12.
    S. D. Beneslavskii and A. V. Dmitriev, Solid State Commun. 32, 1175 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Dmitriev, Semicond. Sci. Technol. 5, 1 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow-Gap Semiconductors (Springer, Berlin, 1983).CrossRefGoogle Scholar
  15. 15.
    A. Krotkus and Z. Dobrovol’skis, Conductivity of Narrow-Gap Semiconductors (Mokslas, Vilnius, 1988).Google Scholar
  16. 16.
    H. Preier, Appl. Phys. 20, 189 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    A. B. Akimov, A. V. Dmitriev, D. R. Khokhlov, and L. I. Ryabova, Phys. Status Solidi A 137, 9 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Dmitriev and A. B. Evlyukhm, Semicond. Sci. Technol. 9, 2056 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    B. M. Mogilevskii and A. F. Chudnovskii, Heat Conductivity of Semiconductors (Nauka, Moscow, 1972).Google Scholar
  20. 20.
    Z. Gibbs, H. Kim, H. Wang, et al., Appl. Phys. Lett. 103, 262109 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations