Skip to main content
Log in

Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness

  • Radiophysics, Electronics, Acoustics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Vortex-wave beams are beams that carry angular momentum. Their specific feature is a ring-like transverse distribution of wave intensity with zero intensity at the axis. A method for generating an ultrasonic vortex beam by combining a single-element transducer and a phase plate with a nonuniform thickness is proposed. The method is examined theoretically and tested experimentally. In the theoretical analysis, the acoustic field was calculated using the Rayleigh integral. Experiments were performed in water with a focusing piezoceramic source with a frequency of the order of 1 MHz; the radiation from it was transmitted through a 12-sector organic-glass phase plate. The beam vorticity was established by setting the correct thickness of sectors. The results of scanning the field with a miniature hydrophone confirmed that the amplitude and phase distributions of the generated wave field were in fact consistent with a vortex beam. The capacity of the obtained beam to induce the rotation of scatterers positioned in the focal region was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

    Article  ADS  Google Scholar 

  2. A. Watson, Science 296, 2316 (2002).

    Article  Google Scholar 

  3. M. S. Soskin, V. N. Gorshkov, and M. V. Vasnetsov, Phys. Rev. A 56, 4064 (1997).

    Article  ADS  Google Scholar 

  4. A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, et al., Nat. Commun. 6, 8661 (2015).

    Article  ADS  Google Scholar 

  5. X. Ding, Z. Peng, S.-C. S. Lin, M. Geri, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 12992 (2014).

    Article  ADS  Google Scholar 

  6. D. Baresch, J.-L. Thomas, and R. Marchiano, J. Appl. Phys. 113, 184901 (2013).

    Article  ADS  Google Scholar 

  7. Y. Li, J. Y. Hwang, and K. K. Shung, Acoust. Today 9, 10 (2013).

    Article  Google Scholar 

  8. M. Padgett, J. Courtial, and L. Allen, Phys. Today 57 (5), 37 (2004).

    Article  Google Scholar 

  9. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, et al., Opt. Commun. 127, 183 (1996).

    Article  ADS  Google Scholar 

  10. C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, et al., Phys. Rev. Lett. 108, 194301 (2012).

    Article  ADS  Google Scholar 

  11. Y. Choe, J. W. Kim, K. K. Shung, and E. S. Kim, Appl. Phys. Lett. 99, 233704 (2011).

    Article  ADS  Google Scholar 

  12. F. G. Mitri, in Proc. IEEE Int. Ultrasonics Symp., Chicago, 2014 (IEEE, 2014), p. 1988.

    Google Scholar 

  13. K. Volke-Sepulveda, A. O. Santillan, and R. R. Boullosa, Phys. Rev. Lett. 100, 024302 (2008).

    Article  ADS  Google Scholar 

  14. L. Zhang and P. Marston, Phys. Rev. E 84, 065601 (2011).

    Article  ADS  Google Scholar 

  15. F. G. Mitri, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 61, 191 (2014).

    Article  Google Scholar 

  16. A. Anhauser, R. Wunenburger, and E. Brasselet, Phys. Rev. Lett. 109, 034301 (2012).

    Article  ADS  Google Scholar 

  17. V. V. Krylov, Foundations of the Theory of Emission and Scattering of Sound (Mosk. Gos. Univ., Moscow, 1988).

    Google Scholar 

  18. O. A. Sapozhnikov, S. A. Tsysar, V. A. Khokhlova, and W. Kreider, J. Acoust. Soc. Am. 138, 1528 (2015).

    Article  Google Scholar 

  19. V. A. Krasil’nikov, Introduction to Acoustics (Mosk. Gos. Univ., Moscow, 1992).

    Google Scholar 

  20. I. A. Chubik and A. M. Maslov, Handbook on Thermophysical Characteristics of Food Products and Prepared Food (Pishch. Prom-st., 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Terzi.

Additional information

Original Russian Text © M.E. Terzi, S.A. Tsysar, P.V. Yuldashev, M.M. Karzova, O.A. Sapozhnikov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 1, pp. 58–65.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzi, M.E., Tsysar, S.A., Yuldashev, P.V. et al. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness. Moscow Univ. Phys. 72, 61–67 (2017). https://doi.org/10.3103/S0027134916050180

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916050180

Keywords

Navigation