Skip to main content
Log in

Effect of incidence angle on the electrical parameters of vertical parallel junction silicon solar cell under frequency domain

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The effect of incidence angle on the electrical parameters of vertical parallel silicon solar cell under frequency domain was theoretically analyzed. Based on the diffusion-recombination equation, the expression of excess minority carrier density in the base was established according to the modulation frequency and the illumination incidence angle. The excess minority carrier density, the photocurrent density, the photo voltage, series resistance, shunt resistance, electric power and the space charge region capacitance were calculated and plotted. The objective of this work was to show the effects of solar cell modulation frequency and the illumination incidence angle on these electrical parameters, electric power and space charge region capacitance. Plots of solar cell’s electric power with the junction recombination velocity gave the maximum solar cell’s electric power; Pm. Influence of various parameters of incidence angles on the solar cell’s electric power was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Baskys, M. Sapurov, and R. Zubavicius, Elektron. Elektrotech. 19 (2), 45 (2013).

    Google Scholar 

  2. S. Kumar Behura, P. Mahala, and A. Ray, J. Electron Devices 10, 471 (2011).

    Google Scholar 

  3. Y. Yue, J. J. Liou, and A. Ortiz-Conde, J. Appl. Phys. 77, 1611 (1995).

    Article  ADS  Google Scholar 

  4. D. L. Meier, J.-M. Hwang, and R. B. Campbell, IEEE Trans. Electron Devices 35, 70 (1988).

    Article  ADS  Google Scholar 

  5. L. J. Geerligs and D. Macdonald, Prog. Photovoltaics: Res. Appl. 12, 309 (2004). doi 10.1002/pip.546

    Article  Google Scholar 

  6. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd ed. (McGraw-Hill, 2003)

    Google Scholar 

  7. D.-K. Kim, Y.-J. Oh, S.-H. Kim, K.-J. Hong, Y.-Y. Jung, H.-J. Kim, and M.-S. Jeon, Trans. Electr. Electron. Mater. 14 (4), 177 (2013).

    Article  Google Scholar 

  8. R. Anil Kumar, M. S. Suresh, and J. Nagaraju, IEEE Trans. Power Electron. 21, 543 (2006).

    Article  Google Scholar 

  9. A. Edler, M. Schlemmer, J. Ranzmeyer, and R. Harney, Energy Procedia 27, 267 (2012).

    Article  Google Scholar 

  10. T. Roth, D. Wichmann, K. Meyer, and M. Orlob, Energy Procedia 8, 82 (2011).

    Article  Google Scholar 

  11. G. Sahin, Results Phys. 6, 107 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. M. Dione, S. Mbodji, M. L. Samb, M. Dieng, M. Thiame, S. Ndoye, F. I. Barro, and G. Sissoko, in Proc. 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2009, p. 465.

    Google Scholar 

  13. M. L. Samb, M. Dieng, S. Mbodji, B. Mbow, N. Thiam, F. I. Barro, and G. Sissoko, in Proc. 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2009, p. 469.

    Google Scholar 

  14. H. Ly Diallo, B. Dieng, I. Ly, M.M. Dione, M. Ndiaye, O.H. Lemrabott, Z.N. Bako, A. Wereme, and G. Sissoko, Res. J. Appl. Sci., Eng. Technol. 4, 2626 (2012).

    Google Scholar 

  15. J. W. Orton and P. Blood, The Electrical Characterization of Semiconductors: Measurement of Minority Carrier Properties (Academic Press, London, 1990).

    Google Scholar 

  16. H. Y. Ba, B. Seibou, I. Gaye, I. Ly, and G. Sissoko, Curr. Trends Technol. Sci. 3, 411 (2014).

    Google Scholar 

  17. G. Sahin, D. Moustapha, A. O. E. M. Mohamed, I. N. Moussa, T. Amary, and S. Gregoire, J. Appl. Math. Phys. 3, 1536 (2015).

    Article  Google Scholar 

  18. N. Honma and C. Munakata, Jpn. J. Appl. Phys. 26, 2033 (1987).

    Article  ADS  Google Scholar 

  19. N. Honma, C. Munakata, and H. Shimizu, Jpn. J. Appl. Phys. 27, 1322 (1988).

    Article  ADS  Google Scholar 

  20. A. Mandelis, J. Appl. Phys. 66, 5572 (1989).

    Article  ADS  Google Scholar 

  21. A. Dieng, I. Zerbo, M. Wade, A. S. Maiga, and G. Sissoko, Semicond. Sci. Technol. 26, 095023 (2011).

    Article  ADS  Google Scholar 

  22. H. L. Diallo, A. Wereme, A. S. Maiga, and G. Sissoko, Eur. Phys. J. Appl. Phys. 42, 203 (2008).

    Article  ADS  Google Scholar 

  23. E. H. Ndiaye, G. Sahin, D. Moustapha, T. Amary, L. D. Hawa, N. Mor, and S. Gregoire, J. Appl. Math. Phys. 3, 1522 (2015).

    Article  Google Scholar 

  24. A. Gover and P. Stella, IEEE Trans. Electron Devices 21, 351 (1974).

    Article  Google Scholar 

  25. M. Sane, M. Zoungrana, H. Ly Diallo, G. Sahin, N. Thiam, M. Ndiaye, M. Dieng, and G. Sissoko, Int. J. Invent. Eng. Sci. 1 (11), 37 (2013).

    Google Scholar 

  26. J. L. Balenzategui and F. Chenlo, Sol. Energy Mater. Sol. Cells 86, 53 (2005).

    Article  Google Scholar 

  27. D. Pysch, A. Mette, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 91, 1698 (2007).

    Article  Google Scholar 

  28. M. K. El-Adawi and I. A. Al-Nuaim, Vacuum 64, 33 (2002).

    Article  Google Scholar 

  29. S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics, 2nd ed. (Routledge, 2007).

    Google Scholar 

  30. M. Bashahu and A. Habyarimana, Renewable Energy 6, 127 (1995).

    Article  Google Scholar 

  31. D. Pysch, A. Mette, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 91, 1698 (2007).

    Article  Google Scholar 

  32. M. K. El-Adawi and I. A. Al-Nuaim, Vacuum 64, 33 (2002).

    Article  Google Scholar 

  33. F. I. Barro, M. Sane, and B. Zouma, Turk. J. Phys. 39, 122 (2015). doi 10.3906/fiz-1408-3

    Article  Google Scholar 

  34. M. Sane, G. Sahin, F. I. Barro, and A. S. Maiga, Turk. J. Phys. 38, 221 (2014). doi 10.3906/fiz-1311-9

    Article  Google Scholar 

  35. S. Sharma, A. Tahir, K. S. Reddy, and T. K. Mallick, Sol. Energy Mater. Sol. Cells 149, 29 (2016).

    Article  Google Scholar 

  36. S. Cate, C. S. S. Sandeep, Y. Liu, M. Law, S. Kinge, A. J. Houtepen, J. M. Schins, and L. D. A. Siebbeles, Acc. Chem. Res. 48, 174 (2015).

    Article  Google Scholar 

  37. G. Itskos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, and S. A. Choulis, Adv. Energy Mater. 1, 802 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Şahin.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, G. Effect of incidence angle on the electrical parameters of vertical parallel junction silicon solar cell under frequency domain. Moscow Univ. Phys. 71, 498–507 (2016). https://doi.org/10.3103/S0027134916050088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916050088

Keywords

Navigation