Moscow University Physics Bulletin

, Volume 71, Issue 1, pp 70–74 | Cite as

Thermodynamic properties of a photon gas confined in hypothetical arbitrary-shaped perfectly reflecting nano-scale geometries

Theoretical and Mathematical Physics


In nano scale, thermodynamic properties of gases show difference from those in macro scales. One of the reasons of this difference is the quantum size effects (QSE), which become significant when compared with the thermal de Broglie wavelength of particles to the characteristic length of the system. In this study, thermodynamic behavior of a photon gas confined in a nanoscale domain is examined in terms of QSE. It is obtained that due to quantum size effects the global thermodynamic properties of a photon gas confined in a nano scale domain are different than those in macro scale. The matter of QSE on thermodynamics of substances at micro/nano scale is relatively a new research area and the new findings might lead to significant new applications.


Photon gas Weyl’s conjecture quantum size effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, 2nd ed. (Wiley-VCH, Weinheim, 2006).CrossRefGoogle Scholar
  2. 2.
    Handbook of Nanoscience, Engineering, and Technology, Ed. W. A. Goddard III, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate (CRC, Boca Raton, 2003).Google Scholar
  3. 3.
    J. W. Kang, K. O. Song, O. K. Kwon, and H. J. Hwang, Nanotechnology 16, 2670 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    J. W. Kang and H. J. Hwang, Nanotechnology 15, 1633 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. H. Epstein, J. Eng. Gas Turbines Power 126, 205 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Hoummady and H. Fujita, Nanotechnology 10, 29 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    L. Filipponi and D. Sutherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Handson Activities (Publications Office of the European Union, Luxembourg, 2012).Google Scholar
  8. 8.
    A. Sisman and G. Babac, Continuum Mech. Thermodyn. 24, 339 (2012).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Z. F. Ozturk, A. Sisman, and C. Firat, Int. J. Thermodyn. 14, 163 (2011).Google Scholar
  10. 10.
    C. Firat, A. Sisman, and Z. F. Ozturk, Int. J. Thermodyn. 14, 155 (2011).Google Scholar
  11. 11.
    C. Firat, A. Sisman, and Z. F. Ozturk, Energy 35, 814 (2010).CrossRefGoogle Scholar
  12. 12.
    Z. F. Ozturk and A. Sisman, Phys. Scr. 80, 065402 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    C. Firat and A. Sisman, Phys. Scr. 79, 065002 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    A. Sisman, Z. F. Ozturk, and C. Firat, Phys. Lett. A 362, 16 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    W. S. Dai and M. Xie, J. Math. Phys. 48, 123302 (2007).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W. S. Dai and M. Xie, Phys. Rev. E 70, 016103 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    W. S. Dai and M. Xie, Phys. Lett. A 311, 340 (2003).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Gutierrez and M. Yanez, Am. J. Phys. 65, 739 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    M. I. Molina, Am. J. Phys. 64, 503 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    H. Pang, W. S. Dai, and M. Xie, J. Phys. A: Math. Gen. 39, 2563 (2006).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Sisman, Phys. J. Phys. A: Math. Gen. 37, 11353 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    A. Sisman and I. Müller, Phys. Lett. A 320, 360 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    W. S. Dai and M. Xie, Phys. Rev. E 70, 016103 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Woburn, 1996).MATHGoogle Scholar
  25. 25.
    H. Weyl, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 1911, 110 (1911).Google Scholar
  26. 26.
    D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, New Jersey, 1995).MATHGoogle Scholar
  27. 27.
    G. D. J. Phillies, Elementary Lectures in Statistical Mechanics (Springer-Verlag, Berlin, 2000).CrossRefMATHGoogle Scholar
  28. 28.
    T. L. Hill, An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960).Google Scholar
  29. 29.
    J. Kuneš, Dimensionless Physical Quantities in Science and Engineering (Elsevier, London, 2012).Google Scholar
  30. 30.
    H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals (Elsevier, London, 2012).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Istanbul Technical University, Energy InstituteMaslakTurkey

Personalised recommendations