Superfunctions and sqrt of factorial

Abstract

The holomorphic function h is constructed such that h h z = z!; this function is interpreted as square root of Factorial.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. M. Saraeva, Yu. M. Romanovskii, and A. V. Borisov, Vladimir Dmitrievich Krivchenkov, Ser. Great Scientists of Physic Department of Mosc. State Univ. (Fiz. Fakult. Mosc. Gos. Univ., Moscow, 2008), p. 81 [in Russian]; http://www.phys.msu.ru/rus/about/structure/admin/OTDEL-IZDAT/HISTORY/.

    Google Scholar 

  2. 2.

    V. M. Gordienko and V. K. Novik, On Time and Faculty, on Cathedra and on me. 70-years from Prof. V. P. Kandidov Birthday (Moscow, 2007) [in Russian]; http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf.

  3. 3.

    M. Abramovits and I. Stegun, Handbook on Special Functions (National Bureau of Standards, NY, 1964) [in English].

    Google Scholar 

  4. 4.

    D. Kouznetsov and H. Trappmann, “Mathematics of Computation,” Preprint ILS UEC (2009, in press); http://www.ils.uec.ac.jp/~dima/PAPERS/2009sqrt2.pdf.

  5. 5.

    http://en.citizendium.org/wiki/Superfunction.

  6. 6.

    H. Trappmann, Elementary Superfunctions (Tetration Forum, Berlin, 2009); http://math.eretrandre.org/tet-rationforum/showthread.php?tid=275.

    Google Scholar 

  7. 7.

    H. Kneser, J. Reine Angew. Mathem. 187, 56 (1950).

    MathSciNet  Article  Google Scholar 

  8. 8.

    H. Trappmann and D. Kouznetsov, “Uniqueness of Holomorphic Abel Functions,” Preprint ILS UEC (2009); http://www.ils.uec.ac.jp/~dima/PAPERS/2009uniabel.pdf.

  9. 9.

    D. Kouznetsov, Math. Comput. 78, 1647 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  10. 10.

    G. Belitskii and Yu. Lubish, Studia Mathem. 134, 135 (1999).

    MATH  Google Scholar 

  11. 11.

    N. H. Abel, Crelle’s J., No. 2, 389 (1827).

  12. 12.

    http://en.citizendium.org/wiki/Abel_function

  13. 13.

    Sun Sui Cheng and Li Wenrong, Analytic Solutions of Functional Equations (World Sci., 2008).

  14. 14.

    E. Schröder, “Uber Iterierte Funktionen III,” Math. Ann. 3, 296 (1870).

    Article  MathSciNet  Google Scholar 

  15. 15.

    M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations (Cambridge, 1990).

  16. 16.

    J. Ecalle, Theory of Holomorphic Invariants, Publ. Mathem. No. 67-74 09 (Paris Univ. U.E.R. Mathem., Orsay, 1970); http://portail.mathdoc.fr/PMO/PDF/E_ECALLE_67_74_09.pdf.

    Google Scholar 

  17. 17.

    J. Milnor, Dynamics in One Complex Variable (Princeton, 2006).

  18. 18.

    M. Mueller, Old projects; http://www.math.tu-berlin.de/~mueller/projects.html

  19. 19.

    D. Kouznetsov, “Ackermann Functions of Complex Argument,” Preprint ILS UEC (2008); http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf.

  20. 20.

    D. Kouznetsov, Vladikavk. Matem. Zh. (2010, in press); http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf.

  21. 21.

    http://en.citizendium.org/wiki/TetrationDerivatives-Real.jpg/code

  22. 22.

    D. Kouznetsov and H. Trappmann, Preprint ILS UEC (2009); http://www.ils.uec.ac.jp/~dima/PAPERS/2009fractae.pdf.

  23. 23.

    http://en.citizendium.org/wiki/ArcGamma.jpg/code

  24. 24.

    A. Robbins, “Solving for the Analytic Piecewice Extension of Tetration and the Super-Logarithm,” Preprint of Virtual Composer (2000); http://misc.virtualcomposer2000.com/TetrationSuperlog_Robbins.pdf.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Kouznetsov.

Additional information

Published in Russian in Vestnik Moskovskogo Universiteta. Fizika, 2010, No. 1, pp. 8–14.

The English-language version of the article was prepared by the authors.

About this article

Cite this article

Kouznetsov, D., Trappmann, H. Superfunctions and sqrt of factorial. Moscow Univ. Phys. 65, 6–12 (2010). https://doi.org/10.3103/S0027134910010029

Download citation

Key words

  • sqrt of Factorial
  • superfunction
  • SuperFactorial
  • inverse problem