Skip to main content
Log in

About “black holes” and dark matter

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

It is shown that the complete system of classical gravitational equations for an isolated centrally symmetric body yields that: (1) in terms of Galilean coordinates all metric coefficients of the Riemannian space induced by the body cannot be equal to zero or infinity anywhere; (2) they, together with the first-order derivatives, should be continuous everywhere. The equations do not contain solutions corresponding to “black holes,” but admit solutions corresponding to objects for which the surface radius (in terms of standard coordinates) is equal to the double mass of matter under this surface. These objects can make the main contribution to the dark matter of the Universe and explain observed effects, such as gravitational microlensing and other effects. Under certain conditions they can become powerful X-ray sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Cherepashchuk, Priroda, 10, 16 (2006).

    Google Scholar 

  2. C. Alcock, C. W. Akerlof, R. A. Allsman, et al., Nature, 365, 621 (1993).

    Article  ADS  Google Scholar 

  3. A. V. Byalko, Astron. Zh., 46, 998 (1969).

    ADS  Google Scholar 

  4. B. Paczynski, Astrophys. J., 804, 1 (1986).

    ADS  Google Scholar 

  5. A. M. Cherepashchuk, Vestn. Mosk. Univ., Ser. Fiz., Astron., 2, 62 (2005).

    Google Scholar 

  6. V. A. Il’in, V. A. Sadovnishii, and Bl. Kh. Sendov, Mathematical Analysis (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  7. Ya. B. Zel’dovich, JETP, 42, 641 (1962).

    Google Scholar 

  8. A. Einstein, Collected Scientific Works, vol. 2, 514 (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  9. S. Weinberg, Gravitation and Cosmology (Wiley, 1972; Moscow, 1975).

  10. V. A. Fock, The Theory of Space, Time and Gravitation (Moscow, 1961; Macmillan, 1964).

  11. A. Einstein, Collection of Scientific Papers, vol. 1, 227 (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  12. Yu. M. Loskutov, Vestn. Mosk. Univ., Ser. Fiz., Astron., 4, 19 (2003).

    Google Scholar 

  13. Yu. M. Loskutov, Vestn. Mosk. Univ., Ser. Fiz., Astron., 3, 18 (2006).

    Google Scholar 

  14. A. A. Logunov and M. A. Mestvirishvili, Relativistic Theory of Gravitation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  15. C. Fronsdal, Suppl. Nuovo Cimento, 9, 416 (1958).

    Article  MathSciNet  Google Scholar 

  16. J. K. Barnes, J. Math. Phys., 6, 788 (1965).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Ya. B. Zeldovich, Dokl. Akad. Nauk SSSR, 155, 67 (1964).

    Google Scholar 

  18. E. E. Salpeter, Astrophys. J., 140, 796 (1964).

    Article  ADS  Google Scholar 

  19. A. M. Cherepashchuk, Usp. Fiz. Nauk, 173, 345 (2003).

    Article  Google Scholar 

  20. M. B. Bogdanov and A. M. Cherepashchuk, Astron. Zh., 79, 693 (2002).

    Google Scholar 

  21. M. B. Bogdanov and A. M. Cherepashchuk, Astron. Zh., 81, 291 (2004).

    Google Scholar 

  22. A. F. Zakharov and M. V. Sazhin, Usp. Fiz. Nauk, 168, 1041 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.M. Loskutov, 2009, published in Vestnik Moskovskogo Universiteta. Fizika, 2009, No. 2, pp. 3–9.

About this article

Cite this article

Loskutov, Y.M. About “black holes” and dark matter. Moscow Univ. Phys. 64, 103–109 (2009). https://doi.org/10.3103/S0027134909020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134909020015

Key words

Navigation