Skip to main content
Log in

Efficiency of collinear acoustooptic interaction in an anisotropic medium

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Collinear acoustooptic interaction in crystals with different values of birefringence is theoretically studied. The crystal medium is considered as a system of thin layers where the orientation of optical indicatrix varies from layer to layer due to the presence of an ultrasonic wave. For collinear diffraction in LiNbO3, α-SiO2, Te, CaMoO4, and Tl3AsSe3 crystals, expressions for the transmitted and diffracted intensities are obtained by means of acoustooptic methods and a new method based on the Jones calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  2. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  3. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).

    Google Scholar 

  4. A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994).

    Google Scholar 

  5. R. Dixon, IEEE J. Quantum Electron. 3(2), 85 (1967).

    Article  ADS  Google Scholar 

  6. S. E. Harris and R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969).

    Article  ADS  Google Scholar 

  7. I. C. Chang, Proc. SPIE 90, 12 (1976).

    ADS  Google Scholar 

  8. V. B. Voloshinov, Opt. Eng. 31, 2089 (1992).

    Article  ADS  Google Scholar 

  9. V. Voloshinov and D. Mishin, Proc. SPIE 2051, 378 (1993).

    Article  ADS  Google Scholar 

  10. V. B. Voloshinov, I. V. Nikolaev, and V. N. Parygin, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 21(2), 42 (1980) [Moscow University Phys. Bull. 35 (2), 46 (1980)].

    Google Scholar 

  11. V. I. Pustovoit and V. E. Pozhar, Photonics Optoelectron. No. 2, 53 (1994).

  12. M. Gottlieb and N. B. Singh, in Proceedings of the School-Seminar on Acoustooptics: Researches and Developments, Leningrad, June 27–July 1, 1990, p. 213.

  13. V. N. Parygin and A. V. Vershoubskiy, Photonics Optoelectron. 5(1), 7 (1998).

    Google Scholar 

  14. V. N. Parygin, A. Vershoubskiy, and K. Kholostov, Opt. Eng. 38, 1149 (1999).

    Article  ADS  Google Scholar 

  15. V. Parygin, A. Vershoubskiy, V. Mozhaev, and M. Weihnacht, Ultrasonics 38, 594 (2000).

    Article  Google Scholar 

  16. V. N. Parygin and L. E. Chirkov, Kvantovaya Elektron. (Moscow) 2, 318 (1975).

    Google Scholar 

  17. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  18. Y. S. Dobrolenskiy, V. B. Voloshinov, V. N. Parygin, Proc. SPIE 5828, 16 (2005).

    Article  ADS  Google Scholar 

  19. Yu. S. Dobrolenskiy, V. B. Voloshinov, and V. N. Parygin, Opt. Spektrosk. 98(4), 673 (2005) [Opt. Spectrosc. 98, 618 (2005)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.S. Dobrolenskii, V.B. Voloshinov, 2007, published in Vestnik Moskovskogo Universiteta. Fizika, 2007, No. 3, pp. 30–34.

About this article

Cite this article

Dobrolenskii, Y.S., Voloshinov, V.B. Efficiency of collinear acoustooptic interaction in an anisotropic medium. Moscow Univ. Phys. 62, 160–164 (2007). https://doi.org/10.3103/S0027134907030083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134907030083

Keywords

Navigation