Skip to main content

Square exponent of irrationality of ln2

Abstract

A new proof of the theorem on the non-quadraticity measure ln 2 is given in the paper.

This is a preview of subscription content, access via your institution.

References

  1. M. Hata, “ℂ2-Saddle Method and Beukers’ Integral,” Trans. Amer. Math. Soc. 352(10), 4557 (2000).

    MathSciNet  MATH  Article  Google Scholar 

  2. R. Marcovecchio, “The Rhin-Viola Method for log 2,” Acta arithm. 139.2, 147 (2009).

    MathSciNet  Article  Google Scholar 

  3. G. Rhin and C. Viola, “On a Permutation Group Related to ξ(2),” Acta arithm. 77, 23 (1996).

    MathSciNet  MATH  Google Scholar 

  4. G. Rhin and C. Viola, “The Group Structure for ξ(3),” Acta arithm. 97, 269 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  5. Yu. V. Nesterenko, “Some Remarks on ξ(3),” Matem. Zametki 59(6), 865 (1996).

    MathSciNet  Google Scholar 

  6. Yu. V. Nesterenko, “On the Irrationality Exponent of the Number ln 2,” Matem. Zametki 88(4), 549 (2010) [Math. Notes 88 (3–4), 530 (2010)].

    Google Scholar 

  7. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, 1927; Fizmatgiz, Moscow, 1963).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Polyanskii, 2012, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2012, Vol. 67, No. 1, pp. 25–30.

About this article

Cite this article

Polyanskii, A.A. Square exponent of irrationality of ln2. Moscow Univ. Math. Bull. 67, 23–28 (2012). https://doi.org/10.3103/S0027132212010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132212010044

Keywords

  • Prime Number
  • Zeta Function
  • Permutation Group
  • Leninskie Gory
  • Riemannian Zeta Function