Skip to main content
Log in

Comparative Analysis of the Capabilities of Spectral Methods in Studying the Internal Rotation of Compounds of the Benzoic Series

  • REVIEW
  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

In this review the methods used to study internal rotation (IR) in the ground (S0) and excited (S1) electronic states for compounds of the benzoic series C6H5–COR, where R = H, F, and CI, are compared. In the (S0) electronic state, differences in the values of (0–v) transitions of the torsional vibration for the studied compounds are revealed in the methods of analysis of the vibrational structure of the n–π* transition of high-resolution UV absorption spectra and Fourier-transform IR spectra. The reasons for such differences are established. In the excited (S1) state for benzaldehyde, the method of analyzing the vibrational structure of the n–π* transition of high-resolution UV absorption spectra and the method of analyzing the excitation spectra of the sensitized phosphorescence of this compound in a cooled jet are compared. It is concluded that the method of analyzing the vibrational structure of the n–π* transition of the high-resolution UV absorption spectra of vapors of the investigated compounds is more reliable and accurate when studying the IR in both electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Glebova, L.A., Pentin, Yu.A., and Tyulin, V.I., Vestn. Mosk. Univ., Ser. 2: Khim., 1979, vol. 20, no. 1, p. 23.

    CAS  Google Scholar 

  2. Durig, J.R., Church, J.S., and Compton, D.A.C., J. Chem. Phys., 1979, vol. 71, no. 3, p. 1175.

    Article  CAS  Google Scholar 

  3. Koroleva, L.A., Tyulin, V.I., Matveev, V.K., and Pentin, Yu.A., Spectrochim. Acta, Part A, 2014, vol. 122, p. 609.

    Article  CAS  Google Scholar 

  4. Durig, J.R., Brletic, P.A., Li, Y.S., Wang, A.Y., and Little, T.S., J. Mol. Struct., 1990, vol. 223, p. 291.

    Article  CAS  Google Scholar 

  5. Koroleva, L.A., Abramenkov, A.V., Krasnoshchekov, S.V., Korolyova, A.V., and Bochenkova, A.V., J. Mol. Struct., 2019, vol. 1181, p. 228.

    Article  CAS  Google Scholar 

  6. Durig, J.R., Qiu, J., Dehoff, B., and Little, T.S., Spectrochim. Acta, Part A, 1986, vol. 42A, no. 2, p. 89.

    Article  CAS  Google Scholar 

  7. Koroleva, L.A., Matveev, V.K., Koroleva, A.V., and Pentin, Yu.A., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 3, p. 488.

    Article  CAS  Google Scholar 

  8. Durig, J.R., Li, Y., and Jin, Y., Chem. Phys., 1996, vol. 213, p. 181.

    Article  CAS  Google Scholar 

  9. Koroleva, L.A., Andriasov, K.S., and Koroleva, A.V., Moscow Univ. Chem. Bull., 2021, vol. 76, no. 6, p. 370.

    Article  Google Scholar 

  10. Durig, J.R., Li, Y., and Jin, Y., Mol. Phys., 1997, vol. 91, no. 3, p. 421.

    Article  CAS  Google Scholar 

  11. Glebova, L.A., Pentin, Yu.A., and Tyulin, V.I., Vestn. Mosk. Univ., Ser. 2: Khim., 1980, vol. 21, no. 1, p. 22.

    CAS  Google Scholar 

  12. Koroleva, L.A., Tyulin, V.I., Matveev, V.K., and Pentin, Yu.A., Vestn. Mosk. Univ., Ser. 2: Khim., 2000, vol. 41, no. 1, p. 16.

    Google Scholar 

  13. Imanishi, S., Jto, M., Semba, K., and Anno, T., J. Chem. Phys., 1952, vol. 20, p. 532.

  14. Smolarek, J., Zwarich, R., and Goodman, L., J. Mol. Spectrosc., 1972, vol. 43, p. 416.

    Article  CAS  Google Scholar 

  15. Hollas, J.M., Gregorek, E., and Goodman, L., J. Chem. Phys., 1968, vol. 49, no. 4, p. 1745.

    Article  CAS  Google Scholar 

  16. Stockburger, M., Z. Phys. Chem., 1962, vol. 31B, nos. 5–6, p. 350.

    Article  Google Scholar 

  17. Durig, J.R., Bist, H.D., Furic, K., Qiu, J., and Little, T.S., J. Mol. Struct., 1985, vol. 129, p. 45.

    Article  CAS  Google Scholar 

  18. Kakar, R.K., Rinehart, E.A., Quade, C.R., and Kojima, T., J. Chem. Phys., 1970, vol. 52, no. 7, p. 3803.

    Article  CAS  Google Scholar 

  19. Kakar, R.K., J. Chem. Phys., 1972, vol. 56, no. 3, p. 1189.

    Article  CAS  Google Scholar 

  20. Condit, D.A., Craven, S.M., and Katon, J.E., Appl. Spectrosc., 1974, vol. 28, no. 5, p. 420.

    Article  CAS  Google Scholar 

  21. Koroleva, L.A., Andriasov, K.S., and Koroleva, A.V., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 11, p. 2265.

    Article  CAS  Google Scholar 

  22. Miller, F.A., Fateley, W.G., and Witkowski, R.E., Spectrochim. Acta, Part A, 1967, vol. 23, p. 891.

    Article  CAS  Google Scholar 

  23. Sarin, V.N., Jain, Y.S., and Bist, H.D., Thermochim. Acta, 1973, vol. 6, p. 39.

    Article  CAS  Google Scholar 

  24. Herzberg, G., Molecular Spectra and Molecular Structure, vol. 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules, New York: Van Nostrand, 1966.

    Google Scholar 

  25. Abramenkov, A.V., Zh. Fiz. Khim., 1995, vol. 69, p. 5851.

    Google Scholar 

  26. Penner, G.H., George, P., and Bock, C., W, J. Mol. Struct., 1987, vol. 152, p. 1147.

    Google Scholar 

  27. Borisenko, K.B., Bock, C.W., and Hargittai, J., J. Phys. Chem., 1996, vol. 100, no. 18, p. 7426.

    Article  CAS  Google Scholar 

  28. Speakman, L.D., Papas, B.N., Woodcock, H.L., and Schaefer, H.F., J. Chem. Phys., 2004, vol. 120, no. 9, p. 4247.

    Article  CAS  PubMed  Google Scholar 

  29. Godunov, J.A., Bataev, V.A., Abramenkov, A.V., and Pupyshev, V.I., J. Phys. Chem. A, 2014, vol. 118, p. 10159.

    Article  CAS  PubMed  Google Scholar 

  30. Glebova, L.A., Pentin, Yu.A., and Tyulin, V.I., Vestn. Mosk. Univ., Ser. 2: Khim., 1980, vol. 21, no. 2, p. 125.

    CAS  Google Scholar 

  31. Balfour, W.J., J. Mol. Spectrosc., 1980, vol. 84, p. 60.

    Article  CAS  Google Scholar 

  32. Koroleva, L.A., Tyulin, V.I., Matveev, V.K., and Pentin, Yu.A., Vestn. Mosk. Univ., Ser. 2: Khim., 1999, vol. 40, no. 1, p. 9.

    CAS  Google Scholar 

  33. Larsen, N.W., Pedersen, T., and Sorensen, B.F., J. Mol. Spectrosc., 1988, vol. 128, p. 370.

    Article  CAS  Google Scholar 

  34. Yadav, R.A., Ram, S., Shanker, R., and Singh, I.S., Spectrochim. Acta, Part A, 1987, vol. 43, no. 7, p. 901.

    Article  Google Scholar 

  35. Head-Gordon, A. and Pople, J., J. Chem. Phys., 1993, vol. 97, p. 1147.

    Article  CAS  Google Scholar 

  36. Schaefer, T., Wildman, T.A., and Sebastian, R., J. Mol. Struct., 1982, vol. 89, p. 93.

    Article  Google Scholar 

  37. Glebova, L.A., Pentin, Yu.A., and Tyulin, V.I., Vestn. Mosk. Univ., Ser. 2: Khim., 1983, vol. 24, no. 3, p. 234.

    CAS  Google Scholar 

  38. Bag, S.C. and Kastha, G.S., Indian J. Phys., 1972, vol. 46, no. 2, p. 412.

    CAS  Google Scholar 

  39. Shashidhar, M.A., Spectrochim. Acta, Part A, 1971, vol. 27, p. 2363.

    Article  CAS  Google Scholar 

  40. Verma, V.N., Nair, K.P.R., and Srivastava, M.P., Indian J. Pure Appl. Phys., 1970, vol. 8, p. 856.

    CAS  Google Scholar 

  41. Margolin, L.N., Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow, 1975.

  42. Goshal, S.K. and Maiti, A.K., Indian J. Phys., B, 1984, vol. 58, p. 262.

    Google Scholar 

  43. Koroleva, L.A., Tyulin, V.I., Matveev, V.K., and Pentin, Yu.A., Vestn. Mosk. Univ., Ser. 2: Khim., 1998, vol. 39, no. 1, p. 20.

    CAS  Google Scholar 

  44. Onda, M. and Asai, M., J. Mol. Struct., 1987, vol. 162, p. 183.

    Article  CAS  Google Scholar 

  45. Ohmori, N., Suzuki, T., and Jto, M., J. Phys. Chem. A, 1988, vol. 92, p. 1086.

    CAS  Google Scholar 

  46. Koroleva, L.A., Andriasov, K.S., and Koroleva, A.V., Russ. J. Phys. Chem. A, 2021, vol. 95, no. 10, p. 2090.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of state task no. 121031300176-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Koroleva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroleva, L.A., Koroleva, A.V. Comparative Analysis of the Capabilities of Spectral Methods in Studying the Internal Rotation of Compounds of the Benzoic Series. Moscow Univ. Chem. Bull. 79, 1–13 (2024). https://doi.org/10.3103/S002713142401005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713142401005X

Keywords:

Navigation