Advertisement

Moscow University Chemistry Bulletin

, Volume 73, Issue 4, pp 179–184 | Cite as

Influence of Different Types of Block Copolymers on the Secondary Structure and Stability of the Staphylolytic Lysk Enzyme

  • L. Y. FilatovaEmail author
  • D. M. Donovan
  • I. A. Novozhilov
  • T. A. Chubar
  • N. G. Balabushevich
  • V. G. Pugachev
  • N. L. Klyachko
Article
  • 11 Downloads

Abstract

A branched block copolymer of polyethyleneimine and polyethylene glycol (PEI–PEG) and a linear block copolymer of polylysine and polyethylene glycol (PLL–PEG) form complexes with the staphylolytic LysK enzyme. The complexation between LysK and cationic block-copolymers results in a 1.5–2.0-fold increase in the lytic activity of LysK and a 2–20-fold increase in its half-life. The stabilizing effects of the block copolymers depend on the temperature, the NaCl concentration, and the polymer/enzyme ratio. Being an effective stabilizer, linear PLL–PEG provides an increase in the LysK stability suitable for biomedical materials (LysK maintains 100% of its activity after four months at 4°C).

Keywords

Staphylococcus aureus lytic enzymes of bacteriophages polymer structure stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodríguez-Rubio, L., Martínez, B., Donovan, D.M., Rodríguez, A., and García, P., Crit. Rev. Microbiol., 2013, vol. 39, p.427.CrossRefPubMedGoogle Scholar
  2. 2.
    Schmelcher, M., Donovan, D.M., and Loessner, M., Future Microbiol., 2012, vol. 7, p. 1147.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Becker, S.C., Foster-Frey, J., and Donovan, D.M., FEMS Microbiol. Lett., 2008, vol. 287, p.185.CrossRefPubMedGoogle Scholar
  4. 4.
    Filatova, L.Yu., Becker, S.C., Donovan, D.M., Gladilin, A.K., and Klyachko, N.L., Biochimie, 2010, vol. 92, p.507.CrossRefPubMedGoogle Scholar
  5. 5.
    Filatova, L.Yu., Bekker, C.C., Donovan, D.M., Gladilyn, A.K., and Klyachko, N.L., Moscow Univ. Chem. Bull. (Engl. Transl.), 2009, vol. 64, p. 382CrossRefGoogle Scholar
  6. 6.
    Filatova, L.Y., Donovan, D.M., Becker, S.C., Lebedev, D.N., Priyma, A.D., Koudriachova, H.V., Kabanov, A.V., and Klyachko, N.L., Biochimie, 2013, vol. 95, p. 1689.CrossRefPubMedGoogle Scholar
  7. 7.
    Filatova, L.Y., Donovan, D.M., Foster-Frey, J., Pugachev, V.G., Dmitrieva, N.F., Chubar, T.A., Klyachko, N.L., and Kabanov, A.V., Enzyme Microb. Technol., 2015, vols. 73–74, p.51.CrossRefPubMedGoogle Scholar
  8. 8.
    Filatova, L.Y., Donovan, D.M., Ishnazarova, N.T., Foster-Frey, J.A., Becker, S.C., Pugachev, V.G., Balabushevich, N.G., Dmitrieva, N.F., Klyachko, N.L., Appl. Biochem. Biotechnol., Part A, 2016, vol. 180, p. 544.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • L. Y. Filatova
    • 1
    Email author
  • D. M. Donovan
    • 2
  • I. A. Novozhilov
    • 1
  • T. A. Chubar
    • 1
  • N. G. Balabushevich
    • 1
  • V. G. Pugachev
    • 3
  • N. L. Klyachko
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Animal Biosciences and Biotechnology LaboratoryBeltsville Agricultural Research Center, NEA, ARS, USDABeltsvilleUSA
  3. 3.Vector Center of Virology & BioengineeringNovosibirskRussia

Personalised recommendations