Moscow University Chemistry Bulletin

, Volume 71, Issue 5–6, pp 295–298 | Cite as

Obtaining ultradispersed dioxidine powder modified via cryochemical synthesis and determining its antibacterial activity

  • O. I. Vernaya
  • V. P. Shabatin
  • A. M. Semenov
  • T. I. Shabatina
Article

Abstract

One way to increase bioavailability and efficiency of drug substances is to decrease their particles up to nanoscale level and to change their crystal structure. A new stable nanoscale form of a polymorphic antibacterial 2,3-bis-(hydroxymethyl)-quinoxaline-N,N′-dioxyde (dioxidine) modification characterized with a gas chromatography, NMR, XRF, TEM, and thermoanalytic methods (TG, DTG, DSC) was obtained via cryochemical synthesis. The new polymorphic dioxidine modification was proved to be more active in growth inhibition processes of gram-positive M. cyaneum 98 and gram-negative E. coli bacterial strains than officinal modification.

Keywords

nanoparticles dioxidine cryochemical modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kostyuchenko, A.L., Efferentnaya terapiya (Efferent Therapy), St. Petersburg: Foliant, 2000.Google Scholar
  2. 2.
    Raw, A.S., Furness, M.S., Gill, D.S., Adams, R.C., Holcombe, F.O., Jr., and Yu, L.X., Adv. Drug Delivery Rev., 2004, vol. 56, no. 3, p. 397.CrossRefGoogle Scholar
  3. 3.
    Blagden, N., de Matas, M., Gavan, P.T., and York, P., Adv. Drug Delivery Rev., 2007, vol. 59, no. 7, p. 617.CrossRefGoogle Scholar
  4. 4.
    Henwood, S.Q., Liebenberg, W., and Tiedt, L.R., Drug Dev. Ind. Pharm., 2001, vol. 27, no. 10, p. 1017.CrossRefGoogle Scholar
  5. 5.
    Braun, D.E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J., and Griesser, U.J., J. Pharm. Sci., 2009, vol. 98, no. 6, p. 2010.CrossRefGoogle Scholar
  6. 6.
    Schmidt, A.C., Senfter, N., and Griesser, U.J., J. Therm. Anal. Calorim., 2003, vol. 73, p. 397.CrossRefGoogle Scholar
  7. 7.
    Velaga, S.P., Berger, R., and Carlfors, J., Pharm. Res., 2002, vol. 19, no. 10, p. 1564.CrossRefGoogle Scholar
  8. 8.
    Pasquali, I., Bettini, R., and Giordano, F., Adv. Drug Delivery Rev., 2008, vol. 60, no. 3, p. 399.CrossRefGoogle Scholar
  9. 9.
    Sergeev, B.M., Mikhalev, S.P., and Morozov, Yu.N., Moscow Univ. Chem. Bull. (Engl. Transl.), 2010, vol. 65, no. 6, p. 366.CrossRefGoogle Scholar
  10. 10.
    Padeiskaya, E.N., Infekts. Antimikrob. Ter., 2001, no. 5, p. 150.Google Scholar
  11. 11.
    Glushkov, R.G., Dronova, L.N., and Elina, A.S., Khim.-Farm. Zh., 1990, vol. 24, no. 1, p. 33.Google Scholar
  12. 12.
    Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam. Metodicheskie ukazaniya (Determination of the Sensitivity of Microorganisms to Antibiotics: Guidelines), Onishchenko, G.G., Ed., Moscow, 2004.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • O. I. Vernaya
    • 1
  • V. P. Shabatin
    • 1
  • A. M. Semenov
    • 1
  • T. I. Shabatina
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations