Advertisement

Moscow University Chemistry Bulletin

, Volume 71, Issue 5–6, pp 299–306 | Cite as

Water effect on the physicochemical properties of oligomeric polysaccharide inulin

  • V. F. Uryash
  • N. Yu. Kokurina
  • V. N. Larina
  • A. E. Gruzdeva
Article

Abstract

For oligomeric polysaccharide inulin from chicory roots, the heat capacity in the range of 80–330 K is measured, and values of standard enthalpy of combustion and formation were determined. Water concentration in inulin in the solution saturated at water melting temperature was determined by means of a calorimetric method from the melting enthalpy of water excess over its solubility in the oligosaccharide. Using the technique of differential thermal analysis, a temperature of relaxation transitions in inulin and an effect of water on these transitions are determined.

Keywords

inulin water heat capacity thermal analysis solubility relaxation transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanenko, B.N., Khimiya i biokhimiya uglevodov (polisakharidov) (Chemistry and Biochemistry of Carbohydrates (Polysaccharides)), Moscow: Vysshaya Shkola, 1978.Google Scholar
  2. 2.
    Kretovich, V.M., Biokhimiya rastenii (Plant Biochemistry), Moscow: Vysshaya Shkola, 1986.Google Scholar
  3. 3.
    Rubel, I.A., Perez, E.E., Genovese, D.B., and Manrique, G.D., Food Res. Int., 2014, vol. 62, p. 59.CrossRefGoogle Scholar
  4. 4.
    Roberfroid, M.B., Nutr. Rev., 2009, vol. 54, no. 11, p. 38.CrossRefGoogle Scholar
  5. 5.
    Rodriguez Furlan, L.T., Lecot, J., Padilla, A.P., Campderros, M.E., and Zaritzky, N., Meat Sci., 2012, vol. 91, p. 478.CrossRefGoogle Scholar
  6. 6.
    Rodriguez Furlan, L.T., Padilla, A.P., and Campderros, M.E., Food Chem., 2015, vol. 170, p. 257.CrossRefGoogle Scholar
  7. 7.
    Cooper, P.D. and Petrovsky, N., Glycobiology, 2011, vol. 21, no. 5, p. 595.CrossRefGoogle Scholar
  8. 8.
    Cooper, P.D., Barclay, T.G., Ginic-Markovic, M., and Petrovsky, N., Glycobiology, 2013, vol. 23, no. 10, p. 1164.CrossRefGoogle Scholar
  9. 9.
    Rabinovich, I.B., Sheiman, M.S., Nistratov, V.P., Kamelova, G.P., and Zorin, A.D., Zh. Fiz. Khim., 1985, vol. 59, no. 10, p. 2414.Google Scholar
  10. 10.
    Rybkin, N.G., Orlova, M.P., Baranyuk, A.K., Nurullaev, N.G., and Rozhnovskaya L.N., Izmerit. Tekh., 1974, no. 7, p. 29.Google Scholar
  11. 11.
    Sklyankin, A.A. and Strelkov, P.G., Zh. Prikl. Mekh. Tekh. Fiz., 1960 no. 2, p. 100.Google Scholar
  12. 12.
    Rabinovich, I.B., Mochalov, A.N., Tsvetkova, L.Ya., Khlystova, T.B., Moseyeva, Ye.M., and Maslova, V.A., Acta Polym., 1983, vol. 34, no. 8, p. 482.CrossRefGoogle Scholar
  13. 13.
    Uryash, V.F., Doctoral (Chem.) Disseration, Nizhny Novgorod, 2005.Google Scholar
  14. 14.
    Uryash, V.F., Uryash, A.V., Gruzdeva, A.E., Kokurina, N.Yu., Larina, V.N., Faminskaya, L.A., and Kalashnikov, I.N., in Physical Organic Chemistry: New Developments, Burley, K.T., Ed., New York: Nova Science, 2012, p. 183.Google Scholar
  15. 15.
    Franks, F., Water: A Comprehensive Treatise, vol. 7: Water and Aqueous Solutions at Subzero Temperature, Franks, F., Ed., New York: Plenum, 1982.Google Scholar
  16. 16.
    Kiryanov, K.V. and Telnoi, V.I., Tr. po khimii i khim. tekhnologii. Mezhvuz. sb. (Collection of Papers on Chemistry and Chemical Technology), Gorkii, 1975, no. 4, p. 109.Google Scholar
  17. 17.
    Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Reference Book), Glushko, V.P., Ed., 1965, no. 1; 1970, no. 4, part 1.Google Scholar
  18. 18.
    Douglas, T.B., Furukava, G.T., McCoskey, R.E., and Ball, A.L., J. Res. Natl. Bur. Stand. (U. S.), 1954, vol. 53, no. 1, p. 139.CrossRefGoogle Scholar
  19. 19.
    McMillan, J.A., J. Chem. Phys., 1965, vol. 42, no. 10, p. 3497.CrossRefGoogle Scholar
  20. 20.
    Garn, P.D. and Menis, O., J. Macromol. Sci., Chem., 1977, vol. 13, p. 611.CrossRefGoogle Scholar
  21. 21.
    Bartenev, G.M. and Sanditov, D.S., Relaksatsionnye protsessy v stekloobraznykh sistemakh (Relaxation Processes in Glassy Systems), Novosibirsk: Nauka, 1986.Google Scholar
  22. 22.
    Transitions and Relaxations in Polymers, Boyer, R.F., Ed., Am. Chem. Soc. Symp., Atlantic City, NJ, September 13–14, 1965, J. Polym. Sci., Part C: Polym. Symp., 1965, no. 14.Google Scholar
  23. 23.
    Perez, J., Polym. Sci., Ser. B, 1998, vol. 40, nos. 1–2, p. 17.Google Scholar
  24. 24.
    Uryash, V.F., Kalashnikov, I.N., and Kashtanov, E.A., in Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr Bioinzheneriya, Ross. Akad. Nauk, 2013, p. 115.Google Scholar
  25. 25.
    Kashtanov, E.A., Uryash, V.F., Kokurina, N.Yu., and Larina, V.N., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 2, p. 221.CrossRefGoogle Scholar
  26. 26.
    Uryash, V.F., Kashtanov, E.A., and Kalashnikov, I.N., Termodinamika i fiziko-khimicheskii analiz khitina i khitozana (Thermodynamics and Physicochemical Analysis of Chitin and Chitosan), Saarbryukken, 2014.Google Scholar
  27. 27.
    Uryash V.F., Larina V.N., Kokurina N.Yu., and Novoselova N.V., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 6, p. 1023.Google Scholar
  28. 28.
    Uryash, V.F., Rabinovich, I.B., Mochalov, A.N., and Khlyustova, T.B., Thermochim. Acta, 1985, vol. 93, p. 409.CrossRefGoogle Scholar
  29. 29.
    Mochalov, A.N., Khlyustova, T.B., Ioelovich, M.Ya., and Kaimin, I.F., Khim. Drevesiny, 1982, no. 4, p. 66.Google Scholar
  30. 30.
    Smirnova, N.N., Lebedev, B.V., and Wunderlich, B., Polym. Sci., Ser. A, 1996, vol. 38, no. 2, p. 99.Google Scholar
  31. 31.
    Wunderlich, B. and Baur, H., Heat capacities of linear high polymers, Adv. Polym. Sci., 1970, vol. 7, p. 151.CrossRefGoogle Scholar
  32. 32.
    Uryash, V.F., Larina, V.N., Kokurina, N.Yu., Bakulin, A.V., Kashtanov, E.A., and Varlamov, V.P., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 1, p. 1.CrossRefGoogle Scholar
  33. 33.
    Rabinovich, I.B., Khlyustova, T.B., Mochalov, A.N., and Kokurina, N.Yu., Zh. Obsch. Khim., 1989, vol. 59, no. 6, p. 1240.Google Scholar
  34. 34.
    Uryash, V.F., Gruzdeva, A.E., Kokurina, N.Yu., Grishatova, N.V., and Larina, V.N., Russ. J. Phys. Chem. A, 2004, vol. 78, no. 5, p. 681.Google Scholar
  35. 35.
    Uryash, V.F., Maslova, V.A., and Chizhikova, V.A., Biosovmestimost, 1994, vol. 2, no. 2, p. 77.Google Scholar
  36. 36.
    Uryash, V.F., Gruzdeva, A.E., Kokurina, N.Yu., Grishatova, N.V., and Faminskaya, L.A., Polym. Sci., Ser. A, 2007, vol. 49, no. 9, p. 1020.CrossRefGoogle Scholar
  37. 37.
    Uryash, V.F., in Khitin i khitozan. Poluchenie, svoistva i primenenie (Chitin and Chitosan: Preparation, Properties, and Applications), Skryabin, K.G., Vikhoreva, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002, p. 119.Google Scholar
  38. 38.
    Cellulose and Cellulose Derivatives, Bikales, N.M. and Segal, L., Eds., New York: Wiley, 1971.Google Scholar
  39. 39.
    Ronkart, S.N., Deroanne, C., Paquot, M., Fougnies, C., and Blecker, C.S., Food Chem., 2010, vol. 119, p. 317.CrossRefGoogle Scholar
  40. 40.
    Uryash, V.F. and Kokurina, N.Yu., Vestn. Nizhegorod. Univ., 2011, vol. 6, no. 1, p. 109.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. F. Uryash
    • 1
  • N. Yu. Kokurina
    • 1
  • V. N. Larina
    • 1
  • A. E. Gruzdeva
    • 2
  1. 1.Laboratory of Chemical Thermodynamics, Scientific Research Institute of ChemistryLobachevski State UniversityNizhny NovgorodRussia
  2. 2.“Grande” Ltd.Nizhny NovgorodRussia

Personalised recommendations