Advertisement

Moscow University Chemistry Bulletin

, Volume 71, Issue 5–6, pp 307–311 | Cite as

Molecular features of ascitic ovarian cancer cells detected by immunofluorescence assay using flow cytometry

  • T. A. Bogush
  • S. A. Kaliuzhny
  • E. A. Dudko
  • V. Yu. Kirsanov
  • A. S. Tjulandina
  • E. A. Bogush
  • S. A. Tjulandin
  • M. M. Davydov
Article
  • 19 Downloads

Abstract

Peritoneal dissemination and growth of tumor cells in the ascitic fluid in stages III and IV of recurrent ovarian cancer is difficult to treat; resistance to many anticancer drugs used in the treatment of solid ovarian cancer is observed at this stage. The author’s hypothesis that the differences in the molecular phenotype of tumor cells for various types of the disease could be an explanation for this. A comparative evaluation of the expression and coexpression of a number of molecular markers (immunofluorescence assay with flow cytometry) was performed using solid and ascitic ovarian cancer cells. In contrast to solid ovarian cancer, ascitic ovarian cancer cells present leukocyte common antigen CD45 and mesenchymal marker vimentin in addition to epithelial marker cytokeratin. In addition to the inhibition of anoikis (specific mechanism of epithelial cell death in a liquid medium in the absence of contact with the substrate), ascitic ovarian cancer cells are characterized by (1) emperipolesis (intracellular migration of leukocytes without damage to the tumor cell), and (2) phenotype of epithelial-mesenchymal transition. Thus, the data on clinically significant molecular differences between solid and recurrent ascitic ovarian cancer was first obtained, opening up opportunities for anticancer therapy, which previously was not used in the treatment of ovarian cancer.

Keywords

ascitic and solid ovarian cancer tumor markers cytokeratin CD45 vimentin flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tjulandina, A.S., Prakt. Onkol., 2014, vol. 15, no. 4, p. 168.Google Scholar
  2. 2.
    Bogush, T.A., Shaturova, A.S., Dudko, E.A., Zhuraev, E.E., Polotsky, B.E., Ungiadze, G.V., and Davydov, M.I., Moscow Umiv. Chem. Bull. (Engl. Transl.), 2011, vol. 52, no. 4, p. 253.CrossRefGoogle Scholar
  3. 3.
    Bogush, T.A., Tikhomirov, M.V., Dudko, E.A., Sinitsina, M.N., Ramanauskaite, R.Yu., Polotsky, B.E., Tulandin, S.A., and Davydov, M.I., Moscow Umiv. Chem. Bull. (Engl. Transl.), 2012, vol. 53, no. 3, p. 142.CrossRefGoogle Scholar
  4. 4.
    Thomas, L.M., Ann. Rev. Immunol., 1989, vol. 7, p. 339.CrossRefGoogle Scholar
  5. 5.
    Schweizer, J., Bowden, P.E., Coulombe, P.A., Langbein, L., Lane, E.B., Magin, T.M., Maltais, L., Omary, M.B., Parry, D.A., Rogers, M.A., and Wright, M.W., J. Cell Biol., 2006, vol. 174, no. 2, p. 169.CrossRefGoogle Scholar
  6. 6.
    Moreno-Bueno, G., Peinado, H., Molina, P., Olmeda, D., Cubillo, E., Santos, V., Palacios, J., Portillo, F., and Cano, A., Nat. Protoc., 2009, vol. 4, no. 11, p. 591.CrossRefGoogle Scholar
  7. 7.
    Ye, X. and Weinberg, R.A., Trends Cell Biol., 2015, vol. 25, no. 11, p. 675.CrossRefGoogle Scholar
  8. 8.
    Ahmed, N., Abubaker, K., Findlay, J., and Quinn, M., Curr. Cancer Drug Targets, 2010, vol. 10, no. 3, p. 268.CrossRefGoogle Scholar
  9. 9.
    Ramakrishnan, M., Mathur, S.R., and Mukhopadhyay, A., Cancer Res., 2013, vol. 73, no. 17, p. 5360.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • T. A. Bogush
    • 1
  • S. A. Kaliuzhny
    • 1
  • E. A. Dudko
    • 1
  • V. Yu. Kirsanov
    • 1
  • A. S. Tjulandina
    • 1
  • E. A. Bogush
    • 1
  • S. A. Tjulandin
    • 1
  • M. M. Davydov
    • 1
  1. 1.Blokhin Russian Cancer Research CenterMoscowRussia

Personalised recommendations