Advertisement

Moscow University Chemistry Bulletin

, Volume 69, Issue 3, pp 125–130 | Cite as

Catalytic characteristics of enzyme-polyelectrolyte complexes based on hexahistidine-containing organophosphorus hydrolase

  • I. V. Lyagin
  • E. N. Efremenko
  • A. V. Kabanov
Article

Abstract

A number of covalent and non-covalent polyelectrolyte complexes based on enzyme such as hexahistidine-containing organophosphorus hydrolase was developed in this work. Polyanions and polycations were used in the form of block-copolymers with poly(ethylene glycol). To obtain covalent complexes of the enzyme, different coupling agents (glutaric aldehyde, N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide sodium salt) were tried. The best catalytic efficiency of the action of the covalently bound complex ((2.8 ± 0.3) × 108 M−1 s−1) was obtained for samples with EDC. The modification of the protein surface was undertaken as an approach to its further biomedical application.

Keywords

hexahistidine-containing organophosphorus hydrolase polyelectrolyte enzyme-polyelectrolyte complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwong, T.C., Ther. Drug Monit., 2002, vol. 24, no. 1, p. 144.CrossRefGoogle Scholar
  2. 2.
    Gupta, R.C., Handbook of Toxicology of Chemical Warfare Agents, London, 2009, p. 1168.Google Scholar
  3. 3.
    Gold, R.S., Wales, M.E., and Grimsley, J.K., Disarm. Technol., 2000, vol. 23, p. 263.Google Scholar
  4. 4.
    Obendorf, S.K., Lemley, A.T., Hedge, A., et al., Arch. Environ. Contam. Toxicol., 2006, vol. 50, no. 1, p. 31.CrossRefGoogle Scholar
  5. 5.
    Lemley, A., Hedge, A., Obendorf, S.K., et al., Bull. Environ. Contam. Toxicol., 2002, vol. 69, no. 2, p. 155.CrossRefGoogle Scholar
  6. 6.
    Votchitseva, Y.A., Efremenko, E.N., Aliev, T.K., and Varfolomeyev, S.D., Biochemistry (Moscow), 2006, vol. 71, p. 167.CrossRefGoogle Scholar
  7. 7.
    Sirotkina, M., Lyagin, I., and Efremenko, E., Int. Biodeterior. Biodegrad., 2012, vol. 68, p. 18.CrossRefGoogle Scholar
  8. 8.
    Efremenko, E.N., Zav’yalova, N.V., Lyagin, I.V., Sen’ko, O.V., Gudkov, D.A., Aksenov, A.V., Stepanov, N.A., Sirotkina, M.S., Spiricheva, O.V., Ivanov, R.V., Lozinskii, V.I., Varfolomeyev, S.D., Kondrat’ev, V.B., and Kholstov, V.I., RF Patent 2408724, 2011.Google Scholar
  9. 9.
    Novikov, B.N., Grimsley, J.K., Kern, R.J., et al., J. Control. Release, 2010, vol. 146, p. 318.CrossRefGoogle Scholar
  10. 10.
    Kabanov, A.V., Bronich, T., Batrakova, E., and Gendelman, H., WO Patent 2008/141155 A1, 2008.Google Scholar
  11. 11.
    Efremenko, E.N., Votchitseva, Y.A., Aliev, T.K., and Varfolomeyev, S.D., RF Patent 2255975, 2005.Google Scholar
  12. 12.
    Efremenko, E., Votchitseva, Y., Plieva, F., et al., Appl. Microbiol. Biot., 2006, vol. 70, p. 558.CrossRefGoogle Scholar
  13. 13.
    Kabanov, A.V., Bronich, T., Batrakova, E., and Gendelman, H., US Patent 2010/0291065 A1, 2010.Google Scholar
  14. 14.
    Jun, D., Musilova, L., Link, M., et al., Chem.-Biol. Interact., 2010, vol. 187, p. 380.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • I. V. Lyagin
    • 1
  • E. N. Efremenko
    • 1
  • A. V. Kabanov
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations