Skip to main content

Identification of water samples from different springs and rivers of Kharkiv: Comparison of methods for multivariate data analysis

Abstract

The application of artificial neural networks for identifying water samples from different springs and rivers of Kharkiv based on the data about metal ions concentrations was studied. Using the river-water samples as an example, we demonstrated that the artificial neural networks enabled the correct identification of water samples, even if there were some gaps in the initial data. The procedure for determining the optimal number of neurons for synthesizing neural networks was proposed.

This is a preview of subscription content, access via your institution.

References

  1. Vershinin, V.I., Derendyaev, B.G., and Lebedev, K.S., Komp’yuternaya identifikatsiya organicheskikh soedinenii (Computer Identification of Organic Compounds), Moscow, 2002.

    Google Scholar 

  2. Vlasov, Yu., Legin, A., Rudnitskaya, A., Di Natale, C., and D’Amico, A., Pure Appl. Chem. 2005, vol. 77, no. 11, p. 1965.

    Article  CAS  Google Scholar 

  3. Qualitative Analysis: A Guide to Best Practice, Hardcastle, W.A., Ed., Cambridge, 1998.

    Google Scholar 

  4. Milman, B.L., Vvedenie v khimicheskuyu identifikatsiyu (Introduction to Chemical Identification), St. Petersburg, 2008.

    Google Scholar 

  5. Groselj, N., van der Veer, G., Tusar, M., Vracko, M., and Novic, M., Food Chem., 2010, vol. 118, no. 4, p. 941.

    Article  CAS  Google Scholar 

  6. Cevoli, C., Cerretani, L., Gori, A., Caboni, M.F., Gallina Toschi, T., and Fabbri, A., Food Chem., 2011, vol. 129, no. 3, p. 1315.

    Article  CAS  Google Scholar 

  7. Peres, A.M., Baptista, P., Malheiro, R., Dias, L.G., Bento, A., and Pereira, J.A., Chemom. Intell. Lab. Syst., 2011, vol. 105, no. 1, p. 65.

    Article  CAS  Google Scholar 

  8. Liao, S.-H. and Wen, C.-H., Expert Syst. Appl., 2007, vol. 32, no. 1, p. 1.

    Article  Google Scholar 

  9. Balabin, R.M., Safieva, R.Z., and Lomakina, E.I., Anal. Chim. Acta, 2010, vol. 671, p. 27.

    Article  CAS  Google Scholar 

  10. Ouyang, Y., Water Res., 2005, vol. 39, no. 12, p. 2621.

    Article  CAS  Google Scholar 

  11. Parinet, B., Lhote, A., and Legube, B., Ecol. Model., 2004, vol. 178, nos. 3-4, p. 2953.

    Google Scholar 

  12. Stanimirova, I., Polowniak, M., Skorek, R., Kita, A., John, E., Buhl, F., and Walczak, B., Talanta, 2007, vol. 74, no. 1, p. 153.

    Article  CAS  Google Scholar 

  13. Panda, U.Ch., Sundaray, S.K., Rath, P., Nayak, B.B., and Bhatta, D., J. Hydrol., 2006, vol. 331, nos. 3–4, p. 434.

    Article  CAS  Google Scholar 

  14. Rodrigues, P.M.S.M., Rodrigues, R.M.M., Costa, B.H.F., Martins, A.A.L.T., and da Silva, J.C.G.E., Chemom. Intell. Lab. Syst., 2010, vol. 102, no. 2, p. 130.

    Article  CAS  Google Scholar 

  15. Saim, N., Osman, R., Spian, D.R.S.A., Jaafar, M.Z., Juahir, H., Abdullah, M.P., and Ghani, F.A., Water Res., 2009, vol. 4, no. 20, p. 5023.

    Article  Google Scholar 

  16. Zhou, F., Guo, H., Liu, Y., and Jiang, Y., Mar. Poll. Bull., 2007, vol. 54, no. 6, p. 745.

    Article  CAS  Google Scholar 

  17. Terrado, M., Lavigne, M.-P., Tremblay, S., Duchesne, S., Villeneuve, J.-P., Rousseau, A.N., Barcelo, D., and Tauler, R., J. Hydrol., 2009, vol. 369, nos. 3–4, p. 416

    Article  CAS  Google Scholar 

  18. Felipe-Sotelo, M., Andrade, J.M., Carlosena, A., and Tauler, R., Anal. Chim. Acta, 2007, vol. 583, no. 1, p. 128.

    Article  CAS  Google Scholar 

  19. Groselj, N., van der Veer, G., Tusar, M., Vracko, M., and Novic, M., Food Chem., 2010, vol. 118, no. 4, p. 941.

    Article  CAS  Google Scholar 

  20. Brodnjak-Voncina, D., Dobcnik, D., Novic, M., and Zupan, J., Anal. Chim. Acta, 2002, vol. 462, no. 1, p. 87.

    Article  CAS  Google Scholar 

  21. D’yakonov, V.P. and Kruglov, V.V., MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Instrumenty iskustvennogo intellekta i bioinformatiki (MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Instruments of Artificial Intellect and Bioinformatics), Moscow, 2006, 454 p.

    Google Scholar 

  22. D’yakonov, V.P. and Kruglov, V.V., Matematicheskie pakety rashireniya MATLAB: Spetsial’nyi spravochnik (Mathematical Packages for MATLAB Update: Special Handbook), St. Petersburg, 2001.

    Google Scholar 

  23. Yuferova, E.V., Smagunova, A.N., and Sizykh, Yu.I., Zh. Anal. Khim., 1997, vol. 52, no. 9, p. 905.

    Google Scholar 

  24. Basargin, N.N., Svanidze, Z.S., and Rozovskii, Yu.G., Zavodskaya Lab., 1993, vol. 59, no. 2, p. 8.

    CAS  Google Scholar 

  25. Yurchenko, O.I., Titova, N.P., and Kozlova, O.V., Kharkov Univ. Bulletin. Chemical Series, 2003, no. 596, issue 10 (33), p. 110. http://chembull.univer.kharkov.ua/archiv/2003/20.pdf

    Google Scholar 

  26. Yebra-Biurrun, M.C., Bermejo-Barrera, A., Bermejo-Barrera, M.P., and Barciela-Alonso, M.C. Anal. Chim. Acta, 1995, vol. 303, nos. 2–3, p. 341.

    Article  CAS  Google Scholar 

  27. Rubel’, A.P. and Koval’chuk, A.P., Zh. Anal. Knim., 1993, vol. 48, no. 5, p. 911.

    Google Scholar 

  28. Moody, J. and Utans, J., Adv. Neurol., 1992, vol. 4, p. 683.

    Google Scholar 

  29. Fan, J. and Pan, J., Appl. Math. Comput., 2009, vol. 207, no. 2, p. 351.

    Article  Google Scholar 

  30. Krishna Kumar, K., Neurocomputing, 1993, vol. 5, no. 6, p. 273

    Article  Google Scholar 

  31. Osovskii, S., Neironnye seti dlya obrabotki informatsii (Neural Networks for Information Processing), Moscow, 2002.

    Google Scholar 

  32. Rutkovskaya, D., Pilins’kii, M., and Rutkovskii, L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy (Neural Networks, Genetic Algorithms and Fuzzy Systems), Moscow, 2006.

    Google Scholar 

  33. Krasnyachin, Ya.N., Panteleimonov, A.V., and Kholin, Yu.V., Kharkov Univ. Bulletin. Chemical Series, 2010, no. 932, issue 9 (42), p. 170. http://chembull.univer.kharkov.ua/archiv/2010-2/21.pdf

    Google Scholar 

  34. Rukovodstvo EVRAKhIM/SITAK “Kolichestvennoe opisnie neopredelennosti v analiticheskikh izmereniyakh” (The EURACHEM/CITAC Guide for Quantifying Uncertainty in Analytical Measurements), St. Petersburg, 2002.

  35. Rios, A., Barcelo, D., Buydens, L., Cardenas, S., Heydorn, K., Karlberg, B., Klemm, K., Lendl, B., Milman, B., Neidhart, B., Stephany, R.W., Townshend, A., Zschunke, A., and Valcarcel, M., Accredit. Qual. Assur., 2003, vol. 8, p. 68.

    Article  CAS  Google Scholar 

  36. Kholin, Yu.V., Nikitina, N.A., Panteleimonov, A.V., Reshetnyak, E.A., Bugaevskii, A.A., and Loginova, L.P., Metrologicheskie kharakteristiki metodik obnaruzheniya s binarnym otklikom (Metrological Characteristics of Detection Procedures with Binary Response), Kharkov, 2008.

    Google Scholar 

  37. Valcarcel, M., Cardenas, S., and Barcelo, D., Metrology of Qualitative Chemical Analysis, Luxembourg, 2002.

    Google Scholar 

  38. Park, Ch.H. and Park, H., Pattern Recognition, 2008, vol. 41, no. 3, p. 1083.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. N. Pushkarova.

Additional information

Original Russian Text © Ya.N. Pushkarova, A.B. Sledzevskaya, A.V. Panteleimonov, N.P. Titova, O.I. Yurchenko, V.V. Ivanov, Yu.V. Kholin, 2012, published in Vestnik Moskovskogo Universiteta. Khimiya, 2012, No. 6, pp. 405–412.

About this article

Cite this article

Pushkarova, Y.N., Sledzevskaya, A.B., Panteleimonov, A.V. et al. Identification of water samples from different springs and rivers of Kharkiv: Comparison of methods for multivariate data analysis. Moscow Univ. Chem. Bull. 68, 60–66 (2013). https://doi.org/10.3103/S0027131412060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131412060077

Keywords

  • qualitative chemical analysis
  • identification
  • artificial neural network
  • linear discriminant analysis