Moscow University Chemistry Bulletin

, Volume 68, Issue 1, pp 60–66 | Cite as

Identification of water samples from different springs and rivers of Kharkiv: Comparison of methods for multivariate data analysis

  • Ya. N. Pushkarova
  • A. B. Sledzevskaya
  • A. V. Panteleimonov
  • N. P. Titova
  • O. I. Yurchenko
  • V. V. Ivanov
  • Yu. V. Kholin
Article

Abstract

The application of artificial neural networks for identifying water samples from different springs and rivers of Kharkiv based on the data about metal ions concentrations was studied. Using the river-water samples as an example, we demonstrated that the artificial neural networks enabled the correct identification of water samples, even if there were some gaps in the initial data. The procedure for determining the optimal number of neurons for synthesizing neural networks was proposed.

Keywords

qualitative chemical analysis identification artificial neural network linear discriminant analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vershinin, V.I., Derendyaev, B.G., and Lebedev, K.S., Komp’yuternaya identifikatsiya organicheskikh soedinenii (Computer Identification of Organic Compounds), Moscow, 2002.Google Scholar
  2. 2.
    Vlasov, Yu., Legin, A., Rudnitskaya, A., Di Natale, C., and D’Amico, A., Pure Appl. Chem. 2005, vol. 77, no. 11, p. 1965.CrossRefGoogle Scholar
  3. 3.
    Qualitative Analysis: A Guide to Best Practice, Hardcastle, W.A., Ed., Cambridge, 1998.Google Scholar
  4. 4.
    Milman, B.L., Vvedenie v khimicheskuyu identifikatsiyu (Introduction to Chemical Identification), St. Petersburg, 2008.Google Scholar
  5. 5.
    Groselj, N., van der Veer, G., Tusar, M., Vracko, M., and Novic, M., Food Chem., 2010, vol. 118, no. 4, p. 941.CrossRefGoogle Scholar
  6. 6.
    Cevoli, C., Cerretani, L., Gori, A., Caboni, M.F., Gallina Toschi, T., and Fabbri, A., Food Chem., 2011, vol. 129, no. 3, p. 1315.CrossRefGoogle Scholar
  7. 7.
    Peres, A.M., Baptista, P., Malheiro, R., Dias, L.G., Bento, A., and Pereira, J.A., Chemom. Intell. Lab. Syst., 2011, vol. 105, no. 1, p. 65.CrossRefGoogle Scholar
  8. 8.
    Liao, S.-H. and Wen, C.-H., Expert Syst. Appl., 2007, vol. 32, no. 1, p. 1.CrossRefGoogle Scholar
  9. 9.
    Balabin, R.M., Safieva, R.Z., and Lomakina, E.I., Anal. Chim. Acta, 2010, vol. 671, p. 27.CrossRefGoogle Scholar
  10. 10.
    Ouyang, Y., Water Res., 2005, vol. 39, no. 12, p. 2621.CrossRefGoogle Scholar
  11. 11.
    Parinet, B., Lhote, A., and Legube, B., Ecol. Model., 2004, vol. 178, nos. 3-4, p. 2953.Google Scholar
  12. 12.
    Stanimirova, I., Polowniak, M., Skorek, R., Kita, A., John, E., Buhl, F., and Walczak, B., Talanta, 2007, vol. 74, no. 1, p. 153.CrossRefGoogle Scholar
  13. 13.
    Panda, U.Ch., Sundaray, S.K., Rath, P., Nayak, B.B., and Bhatta, D., J. Hydrol., 2006, vol. 331, nos. 3–4, p. 434.CrossRefGoogle Scholar
  14. 14.
    Rodrigues, P.M.S.M., Rodrigues, R.M.M., Costa, B.H.F., Martins, A.A.L.T., and da Silva, J.C.G.E., Chemom. Intell. Lab. Syst., 2010, vol. 102, no. 2, p. 130.CrossRefGoogle Scholar
  15. 15.
    Saim, N., Osman, R., Spian, D.R.S.A., Jaafar, M.Z., Juahir, H., Abdullah, M.P., and Ghani, F.A., Water Res., 2009, vol. 4, no. 20, p. 5023.CrossRefGoogle Scholar
  16. 16.
    Zhou, F., Guo, H., Liu, Y., and Jiang, Y., Mar. Poll. Bull., 2007, vol. 54, no. 6, p. 745.CrossRefGoogle Scholar
  17. 17.
    Terrado, M., Lavigne, M.-P., Tremblay, S., Duchesne, S., Villeneuve, J.-P., Rousseau, A.N., Barcelo, D., and Tauler, R., J. Hydrol., 2009, vol. 369, nos. 3–4, p. 416CrossRefGoogle Scholar
  18. 18.
    Felipe-Sotelo, M., Andrade, J.M., Carlosena, A., and Tauler, R., Anal. Chim. Acta, 2007, vol. 583, no. 1, p. 128.CrossRefGoogle Scholar
  19. 19.
    Groselj, N., van der Veer, G., Tusar, M., Vracko, M., and Novic, M., Food Chem., 2010, vol. 118, no. 4, p. 941.CrossRefGoogle Scholar
  20. 20.
    Brodnjak-Voncina, D., Dobcnik, D., Novic, M., and Zupan, J., Anal. Chim. Acta, 2002, vol. 462, no. 1, p. 87.CrossRefGoogle Scholar
  21. 21.
    D’yakonov, V.P. and Kruglov, V.V., MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Instrumenty iskustvennogo intellekta i bioinformatiki (MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Instruments of Artificial Intellect and Bioinformatics), Moscow, 2006, 454 p.Google Scholar
  22. 22.
    D’yakonov, V.P. and Kruglov, V.V., Matematicheskie pakety rashireniya MATLAB: Spetsial’nyi spravochnik (Mathematical Packages for MATLAB Update: Special Handbook), St. Petersburg, 2001.Google Scholar
  23. 23.
    Yuferova, E.V., Smagunova, A.N., and Sizykh, Yu.I., Zh. Anal. Khim., 1997, vol. 52, no. 9, p. 905.Google Scholar
  24. 24.
    Basargin, N.N., Svanidze, Z.S., and Rozovskii, Yu.G., Zavodskaya Lab., 1993, vol. 59, no. 2, p. 8.Google Scholar
  25. 25.
    Yurchenko, O.I., Titova, N.P., and Kozlova, O.V., Kharkov Univ. Bulletin. Chemical Series, 2003, no. 596, issue 10 (33), p. 110. http://chembull.univer.kharkov.ua/archiv/2003/20.pdf Google Scholar
  26. 26.
    Yebra-Biurrun, M.C., Bermejo-Barrera, A., Bermejo-Barrera, M.P., and Barciela-Alonso, M.C. Anal. Chim. Acta, 1995, vol. 303, nos. 2–3, p. 341.CrossRefGoogle Scholar
  27. 27.
    Rubel’, A.P. and Koval’chuk, A.P., Zh. Anal. Knim., 1993, vol. 48, no. 5, p. 911.Google Scholar
  28. 28.
    Moody, J. and Utans, J., Adv. Neurol., 1992, vol. 4, p. 683.Google Scholar
  29. 29.
    Fan, J. and Pan, J., Appl. Math. Comput., 2009, vol. 207, no. 2, p. 351.CrossRefGoogle Scholar
  30. 30.
    Krishna Kumar, K., Neurocomputing, 1993, vol. 5, no. 6, p. 273CrossRefGoogle Scholar
  31. 31.
    Osovskii, S., Neironnye seti dlya obrabotki informatsii (Neural Networks for Information Processing), Moscow, 2002.Google Scholar
  32. 32.
    Rutkovskaya, D., Pilins’kii, M., and Rutkovskii, L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy (Neural Networks, Genetic Algorithms and Fuzzy Systems), Moscow, 2006.Google Scholar
  33. 33.
    Krasnyachin, Ya.N., Panteleimonov, A.V., and Kholin, Yu.V., Kharkov Univ. Bulletin. Chemical Series, 2010, no. 932, issue 9 (42), p. 170. http://chembull.univer.kharkov.ua/archiv/2010-2/21.pdf Google Scholar
  34. 34.
    Rukovodstvo EVRAKhIM/SITAK “Kolichestvennoe opisnie neopredelennosti v analiticheskikh izmereniyakh” (The EURACHEM/CITAC Guide for Quantifying Uncertainty in Analytical Measurements), St. Petersburg, 2002.Google Scholar
  35. 35.
    Rios, A., Barcelo, D., Buydens, L., Cardenas, S., Heydorn, K., Karlberg, B., Klemm, K., Lendl, B., Milman, B., Neidhart, B., Stephany, R.W., Townshend, A., Zschunke, A., and Valcarcel, M., Accredit. Qual. Assur., 2003, vol. 8, p. 68.CrossRefGoogle Scholar
  36. 36.
    Kholin, Yu.V., Nikitina, N.A., Panteleimonov, A.V., Reshetnyak, E.A., Bugaevskii, A.A., and Loginova, L.P., Metrologicheskie kharakteristiki metodik obnaruzheniya s binarnym otklikom (Metrological Characteristics of Detection Procedures with Binary Response), Kharkov, 2008.Google Scholar
  37. 37.
    Valcarcel, M., Cardenas, S., and Barcelo, D., Metrology of Qualitative Chemical Analysis, Luxembourg, 2002.Google Scholar
  38. 38.
    Park, Ch.H. and Park, H., Pattern Recognition, 2008, vol. 41, no. 3, p. 1083.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • Ya. N. Pushkarova
    • 1
  • A. B. Sledzevskaya
    • 1
  • A. V. Panteleimonov
    • 1
  • N. P. Titova
    • 1
  • O. I. Yurchenko
    • 1
  • V. V. Ivanov
    • 1
  • Yu. V. Kholin
    • 1
  1. 1.Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations