Skip to main content
Log in

Modeling of Non-Isothermal Viscoelastic-Viscoplastic Deformation of Bending Reinforced Plates

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A model of non-isothermal viscoelastic-viscoplastic deformation of multidirectionally reinforced flexible plates has been developed. The viscoplastic deformation of isotropic materials of the composition is described by the relations of the flow theory with isotropic hardening, which take into account the dependences of the loading functions on temperature and strain rate intensity. The viscoelastic behavior of the composition components is described by the equations of the Maxwell–Boltzmann model. The weakened resistance of reinforced plates to transverse shifts is modeled by the Ambartsumian bending theory relations, and the geometric nonlinearity is modeled in the Karman approximation. The connection between the thermophysical and mechanical components of the problem of inelastic dynamic deformation of reinforced plates is taken into account. The temperature over the thickness of structures is approximated by a 7th order polynomial. The numerical solution of the formulated nonlinear two-dimensional problem is constructed using an explicit scheme of time steps. The viscoelastic-viscoplastic dynamic behavior of a relatively thin glass-plastic plate is studied with and without allowance for the thermal response in it. The structure is loaded transversely with an air blast wave. It is shown that the failure to take into account the thermal response in a fiberglass plate can significantly distort the calculated fields of residual deformations of the components of its composition, despite the fact that the maximum heating of such a structure does not exceed 10°C. Viscoelastic-plastic calculations, when the sensitivity of the composite materials to the rate of their deformation can be neglected, can reasonably be carried out without taking into account the thermal response of the composite plate, if there are no external heat sources of non-mechanical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. A. Ambartsumyan, Theory of Anisotropic Plates: Strength, Stability and Vibrations (CRC Press, Boca Raton, FL, 1991; Nauka, Moscow, 1987).

  2. A. E. Bogdanovich, Nonlinear Problems in the Dynamics of Cylindrical Composite Shells (Zinatne, Riga, 1987) [in Russian].

    MATH  Google Scholar 

  3. M. Bannister, “Challenger for composites into the next millennium – a reinforcement perspective,” Compos. Part A Appl. 32 (7), 901–910 (2001). https://doi.org/10.1016/S1359-835X(01)00008-2

    Article  Google Scholar 

  4. A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos. Struct. 53 (1), 21–42 (2001). https://doi.org/10.1016/S0263-8223(00)00175-6

    Article  Google Scholar 

  5. N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of Dynamics Composites Designs (Nizhegor. Gos. Univ., Nizhni Novgorod, 2002) [in Russian].

    Google Scholar 

  6. G. M. Kulikov, “Thermoelasticity of flexible multilayer anisotropic shells,” Mech. 29 (2), 27–35 (1994).

    Google Scholar 

  7. C. Soutis, “Fibre reinforced composites in aircraft construction,” Prog. Aerosp. Sci. 41 (2), 143–151 (2005). https://doi.org/10.1016/j.paerosci.2005.02.004

    Article  Google Scholar 

  8. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, New York, 2004). 831 p.

    MATH  Google Scholar 

  9. M. S. Qatu, R. W. Sullivan, and W. Wang, “Recent research advances on the dynamic analysis of composite shells: 2000–2009,” Compos. Struct. 93, 14–31 (2010).

    Article  Google Scholar 

  10. V. V. Vasiliev and E. Morozov, Advanced Mechanics of Composite Materials and Structural Elements (Elsever, Amsterdam, 2013).

    Google Scholar 

  11. A. Andreev, Elasticity and Thermoelasticity of Layered Composite Shells. Mathematical Model and Some Aspects of the Numerical Analysis (Palmarium Acad. Publ., Saarbrucken, 2013).

    Google Scholar 

  12. S. K. Gill, M. Gupta, and P. S. Satsangi, “Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastic composites,” Front. Mech. Eng. 8, 187–200 (2013). https://doi.org/10.1007/s11465-013-0262-x

    Article  Google Scholar 

  13. Z. Kazanci, “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses,” Int. J. Non-Linear Mech. 46 (5), 807–817 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.03.011

    Article  ADS  Google Scholar 

  14. Yu. S. Solomonov, V. P. Georgievskii, A. Ya. Nedbay, and V. A. Andryushin, Applied Problems of Mechanics of Composite Cylindrical Shells (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  15. F. D. Moriniere, R.C. Alderliesten, and R. Benedictus, “Modelling of impact damage and dynamics in fibre-metal laminates – A review,” Int. J. Impact Eng. 67, 27–38 (2014). https://doi.org/10.1016/j.ijimpeng.2014.01.004

    Article  Google Scholar 

  16. R. F. Gibson, Principles of Composite Material Mechanics (Taylor & Francis Group, 2015).

    Google Scholar 

  17. Yu. I. Dimitrienko, Mechanics of Composite Structures at High Temperatures (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  18. P. Vena, D. Gastaldi, and R. Contro, “Determination of the effective elastic-plastic response of metal-ceramic composites,” Int. J. Plast. 24 (3), 483–508 (2008). https://doi.org/10.1016/j.ijplas.2007.07.001

    Article  MATH  Google Scholar 

  19. S.-Y. Leu and H.-C. Hsu, “Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders,” Int. J. Mech. Sci. 52 (12), 1579–1587 (2010). https://doi.org/10.1016/j.ijmecsci.2010.07.006

    Article  Google Scholar 

  20. L. Brassart, L. Stainier, I. Doghri, and L. Delannay, “Homogenization of elasto-(visco) plastic composites based on an incremental variational principle,” Int. J. Plast. 36, 86–112 (2012). https://doi.org/10.1016/j.ijplas.2012.03.010

    Article  MATH  Google Scholar 

  21. V. M. Akhundov, “Incremental carcass theory of fibrous media under large elastic and plastic deformations,” Mech. Compos. Mater. 51, 383–396 (2015). https://doi.org/10.1007/s11029-015-9509-4

    Article  ADS  Google Scholar 

  22. A. P. Yankovskii, “Modeling of viscoelastic-viscoplastic behavior of flexible reinforced plates,” Mech. Solids 56, 631–645 (2021). https://doi.org/10.3103/S0025654421050198

    Article  ADS  Google Scholar 

  23. A. P. Yankovskii, “Modeling of thermoelastic-visco-plastic deformation of flexible reinforced plates,” Mech. Solids 57, 1717–1739 (2022). https://doi.org/10.3103/S0025654422070184

    Article  ADS  MATH  Google Scholar 

  24. N. I. Bezukhov, V. L. Bazhanov, I. I. Goldenblat, et al., Calculations of Strength, Stability, and Vibrations under High-Temperature Conditions (Mashinostroenie, Moscow, 1965) [in Russian].

    Google Scholar 

  25. Composite Materials. Reference Book, Ed. by D. M. Karpinos (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  26. E. Reissner, “The effect of transverse-shear deformation on the bending of elastic plates,” J. Appl. Mech. 12 (2), 69–77 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Houlston and C. G. DesRochers, “Nonlinear structural response of ship panels subjected to air blast loading,” Comput. Struct. 26 (1–2), 1–15 (1987). https://doi.org/10.1016/0045-7949(87)90232-X

  28. A. M. Freudental and H. Geiringer, The Mathematical Theories of the Inelastic Continuum (Springer-Verlag, Berlin, 1958; Fizmatgiz, Moscow, 1962).

  29. K. Dekker and J. G. Verwer, Stability of Runge – Kutta Methods for Stiff Nonlinear Differential Equation (North-Holland, Amsterdam, 1984; Mir, Moscow, 1988).

  30. G. M. Khazhinskiy, Models of Deformation and Fracture of Metals (Nauchnyi Mir, Moscow, 2011) [in Russian].

    Google Scholar 

  31. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Rigid Polymeric Materials (Zinatne, Riga, 1972) [in Russian].

    Google Scholar 

  32. A. P. Yankovskii, “Modelling of processes of thermal conductivity in spatially reinforced composites with any orientation of fibres,” Prikl. Fiz., No. 3, 32–38 (2011).

  33. Yu. M. Tarnopol’skii, I. G. Zhigun, and V. A. Poliakov, Spatially Reinforced Composite Materials (Mashinostroenie, Moscow, 1987) [in Russian].

    Google Scholar 

  34. V. N. Lukanin, M. G. Shatrov, et al., Heat Engineering (Vyssh. Shkola, Moscow, 2003) [in Russian].

    Google Scholar 

  35. Handbook of Composites, Ed. by G. Lubin, Vol. 1 (Springer, New York, 1982; Mashinostr., Moscow, 1988).

Download references

Funding

The work was carried out within the framework of the state assignment (state registration number 121030900260-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Yankovskii.

Additional information

Translated by M.Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yankovskii, A.P. Modeling of Non-Isothermal Viscoelastic-Viscoplastic Deformation of Bending Reinforced Plates. Mech. Solids 58, 1559–1577 (2023). https://doi.org/10.3103/S002565442370019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442370019X

Keywords:

Navigation