Skip to main content
Log in

Transient Response of a Nonlocal Viscoelastic Cylinder with Double Porosity

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The forced vibration analysis of an isotropic nonlocal viscoelastic hollow cylinder with double porosity due to mechanical loads has been presented in the present work. Inner surface of the cylinder under study has been loaded mechanically while the outer surface has been considered as traction free. In order to simplify the governing equations, a time harmonics technique has been implemented which results a system of coupled ordinary differential equations from coupled partial differential equations. The double porosity of the cylinder has been presumed free from voids volume fraction. The analytical results have been simulated numerically with the help of MATLAB software tools. Computer simulated and generated data has been presented graphically for various field variables of interest obtained from the analytical solutions and analyzed the graphically plotted results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. M. A. Biot, “Variational principle in irreversible thermodynamics with application to viscoelasticity,” Phys. Rev. 97 (6), 1463–1469 (1955). https://doi.org/10.1103/PhysRev.97.1463

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phy. 27 (3), 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. E. H. Love, A Treatise on the Mathematical. Theory of Elasticity (Dover, New York, 1994).

  4. W. Nowacki, Dynamic Problems of Thermoelasticity (Noordhof, Leyden, 1975).

    MATH  Google Scholar 

  5. R. S. Dhaliwal and A. Singh, Dynamic Coupled Thermo Elasticity (Hindustan Pub. Corp., New Delhi, 1980).

  6. D. Iesan, “Some theorems in the theory of elastic materials with voids,” J. Elasticity 15, 215–224 (1985). https://doi.org/10.1007/BF00041994

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Iesan, “A theory of thermoelastic materials with voids,” Acta Mech. 60, 67–89(1986). https://doi.org/10.1007/BF01302942

    Article  Google Scholar 

  8. M. Ciarletta and A. Scalia, “On the nonlinear theory of non simplethermoelastic materials with voids,” J. Appl. Math. Mech. 73, 67–75 (1993). https://doi.org/10.1002/zamm.19930730202

    Article  MATH  Google Scholar 

  9. S. C. Cowin, “The viscoelastic behavior of linear elastic materials with voids,” J. Elasticity 15, 185–191 (1985). https://doi.org/10.1007/BF00041992

    Article  MATH  Google Scholar 

  10. M. Ciarletta and A. Scalia. “On some theorems in linear theory of viscoelastic materials with voids,” J. Elasticity 25, 149–158 (1991). https://doi.org/10.1007/BF00042463

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Martinez and R. Quintanilla, “Existence, uniqueness and asymptotic behaviour of solutions to the equation viscoelasticity with voids,” Int. J. Solids Struct. 35, 3347–3361 (1998). https://doi.org/10.1016/S0020-7683(98)00018-3

    Article  MathSciNet  MATH  Google Scholar 

  12. R. S. Dhaliwal and J. Wang, “A heat flux dependent theory of thermoelasticity materials with voids,” Acta Mech. 110, 33-39 (1995). https://doi.org/10.1007/BF01215413

    Article  MathSciNet  MATH  Google Scholar 

  13. S. D. Cicco and M. Diaco, “A theory of thermoelastic materials with voids without energy dissipation,” J. Therm. Stress. 24, 433–455 (2002). https://doi.org/10.1080/01495730252890203

    Article  MathSciNet  Google Scholar 

  14. K. Sharma and P. Kumar, “Propagation of plane waves and fundamental solution in thermoelastic medium with voids,” J. Therm. Stress. 36, 94–111 (2013). https://doi.org/10.1080/17455030.2022.2155331

    Article  Google Scholar 

  15. D. Iesan, “On theory of viscoelastic mixtures,” J. Therm. Stress. 27, 1125–1148 (2004). https://doi.org/10.1080/01495730490498575

    Article  MathSciNet  Google Scholar 

  16. R. Quinttanilla, “Existence and exponential decay in the linear theory of viscoelastic mixtures,” Eur. J. Mech. A, Solids 24, 311–324 (2005). https://doi.org/10.1016/j.euromechsol.2004.11.008

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Iesan and L. Nappa, “On the theory of viscoelastic mixtures and stability,” Math. Mech. Solids 13, 55–80 (2008). https://doi.org/10.1177/1081286506072351

    Article  MathSciNet  MATH  Google Scholar 

  18. S. K. Tomar, J. Bhagwan, and H. Steeb, “Time harmonic waves in thermo-viscoelastic material with voids,” J. Vib. Contr. 20 (8), 1119–1136 (2014). https://doi.org/10.1177/1077546312470479

    Article  MathSciNet  MATH  Google Scholar 

  19. M. M. Svanadze, “Potential method in the theory of viscoelastic material with voids,” J. Elasticity 114 (1), 101–126 (2014). https://doi.org/10.1007/s10659-013-9429-2

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Pathania, R. Kumar, V. Gupta, and M. S. Barak, “Double porous thermoelastic waves in a homogeneous isotropic solid with inviscid liquid,” Arch. Appl. Mech. 93, 1943–1962 (2023). https://doi.org/10.1007/s00419-023-02364-w

    Article  ADS  Google Scholar 

  21. D. K. Sharma, P. C. Thakur, N. Sarkar, and M. Bachher, “Vibrations of a nonlocal thermoelastic cylinder with void,” Acta Mech. 231, 2931–2945 (2020). https://doi.org/10.1007/s00707-020-02681-z

    Article  MathSciNet  MATH  Google Scholar 

  22. D. K. Sharma, P. C. Thakur, and N. Sarkar, “Effect of dual-phase-lag model on free vibrations of isotropic homogeneous nonlocal thermoelastic hollow sphere with voids,” Mech. Based Des. Struct. Mech. 50, 3949–3965 (2022). https://doi.org/10.1080/15397734.2020.1824792

    Article  Google Scholar 

  23. N. Khalili and A. P. S. Selvadura, “A fully coupled constitutive model for thermo-hydromechanical analysis in elastic media with double porosity,” Geophys. Res. Lett. 30 (24), 2268 (2003). https://doi.org/10.1029/2003GL018838

    Article  ADS  Google Scholar 

  24. M. Svanadze, “On the coupled theory of thermoelastic double-porosity materials,” J. Therm. Stress. 45, 576–596 (2022). https://doi.org/10.1080/01495739.2022.2077870

    Article  Google Scholar 

  25. B. Straughan, “Stability and uniqueness in double porosity elasticity,” Int. J. Eng. Sci. 65, 1–8 (2013). https://doi.org/10.1016/j.ijengsci.2013.01.001

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Kumar, D. Singh, and S. K. Tomar, “Surface waves in layered thermoelastic medium with double porosity structure: Rayleigh and Stoneley waves,” Mech. Adv. Mater Struct. 9 (4), 479–490 (2022). https://doi.org/10.1080/15376494.2021.1876283

    Article  Google Scholar 

  27. E. Kroner, “Elasticity theory of materials with long range cohesive forces,” Int. J. Solids Struct. 3, 731–742 (1967). https://doi.org/10.1016/0020-7683(67)90049-2

    Article  MATH  Google Scholar 

  28. A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci. 10, 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  29. A. C. Eringen, “Theory of nonlocal thermoelasticity,” Int. J. Eng. Sci. 12, 1063–1077 (1974). https://doi.org/10.1016/0020-7225(74)90033-0

    Article  MATH  Google Scholar 

  30. A. C. Eringen, “Memory-dependent nonlocal electromagnetic elastic solids and super-conductivity,” J. Math. Phys., 32, 787–796 (1991). https://doi.org/10.1063/1.529372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. C. Eringen, Nonlocal Polar Field Models (Academic Press, New York, 1996).

    Google Scholar 

  32. A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).

    MATH  Google Scholar 

  33. V. V. Vasiliev and S. A. Lurie, “Nonlocal solutions to singular problems of mathematical physics and mechanics,” Mech. Solids 53 (Suppl. 2), 135–144 (2018). https://doi.org/10.3103/S0025654418050163

    Article  ADS  MATH  Google Scholar 

  34. D. Iesan and R. Quintanilla, “On a theory of thermoelastic materials with a double porosity structure,” J Therm. Stress. 37, 1017–1036 (2014). https://doi.org/10.1080/01495739.2014.914776

    Article  Google Scholar 

  35. P. Puri and S.C. Cowin, “Plane waves in linear elastic materials with voids,” J. Elasticity 15 (2), 167–183 (1985). https://doi.org/10.1007/BF00041991

    Article  MATH  Google Scholar 

  36. A. Khurana and S. K. Tomar, “Rayleigh-type waves in nonlocal micropolar solid half-space,” Ultrasonics 73, 162-168 (2017). https://doi.org/10.1016/j.ultras.2016.09.005

    Article  Google Scholar 

  37. S. Malik, D. Gupta, K. Kumar, et al., “Reflection and transmission of plane waves in nonlocal generalized thermoelastic solid with diffusion,” Mech. Solids 58, 161–188 (2023). https://doi.org/10.3103/S002565442260088X

    Article  ADS  Google Scholar 

  38. V. Gupta, R. Kumar, M. Kumar, et al., “Reflection/transmission of plane waves at the interface of an ideal fluid and nonlocal piezothermoelastic medium,” Int. J. Numer. Meth. Heat Fluid Flow. 33 (2), 912–937 (2022). https://doi.org/10.1108/HFF-04-2022-0259

    Article  Google Scholar 

  39. M. S. Barak, R. Kumar, R. Kumar, and V. Gupta, “Energy analysis at the boundary interface of elastic and piezothermoelastic half-spaces,” Indian J. Phys. 97, 2369–2383 (2023). https://doi.org/10.1007/s12648-022-02568-w

    Article  ADS  Google Scholar 

  40. J. N. Sharma, D. K. Sharma, and S. S. Dhaliwal, “Free vibration analysis of a rigidly fixed viscothermoelastic hollow sphere,” Indian J. Pure Appl. Math. 44, 559–586 (2013). https://doi.org/10.1007/s13226-013-0030-y

    Article  MathSciNet  MATH  Google Scholar 

  41. J. N. Sharma, P. K. Sharma, and K. C. Mishra, “Analysis of free vibrations in axisymmetric functionally graded thermoelastic cylinders,” Acta Mech. 225, 1581–1594 (2014). https://doi.org/10.1007/s00707-013-1010-3

    Article  MathSciNet  MATH  Google Scholar 

  42. D. K. Sharma, N. Sarkar, and M. Bachher, “Interactions in a nonlocal thermoelastic hollow sphere with voids due to harmonically varying heat sources,” Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.2005846

  43. D. K. Sharma, “Effect of phase-lags model on thermoelastic interactions of nonlocal elastic hollow cylinder with voids material in the presence of time-dependent heat flux,” Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci. 92, 343–352 (2022). https://doi.org/10.1007/s40010-021-00766-5

    Article  Google Scholar 

  44. G. A. Yahya, S. H. Elhag, M. F. Sanaa, et al., “Effect of initial stress on wave frequencies of elastic solid with rotation,” J. Modern Phys. 5 (18), 2012–2021 (2014). https://doi.org/10.4236/jmp.2014.518197

    Article  ADS  Google Scholar 

  45. B. Labiodh and M. Chalane, “Effect of localized defect positioning on buckling of axisymmetric cylindrical shells under axial compression,” Mech. Solids 58, 880–889 (2023). (2023) https://doi.org/10.3103/S0025654423600046

  46. I. Y. Tsukanov, “On the contact problem for a wavy cylinder and elastic half-plane,” Mech. Solids 57, 2104–2110 (2022). https://doi.org/10.3103/S002565442208026X

    Article  ADS  MATH  Google Scholar 

  47. M. S. Barak and P. Dhankhar, “Effect of inclined load on a functionally graded fiber-reinforced thermoelastic medium with temperature-dependent properties,” Acta Mech. 233, 3645–3662 (2022). https://doi.org/10.1007/s00707-022-03293-5

    Article  MathSciNet  MATH  Google Scholar 

  48. M. S. Barak and P. Dhankhar, “Thermo-mechanical interactions in a rotating nonlocal functionally graded transversely isotropic elastic half-space,” ZAAM 103 (2), e202200319 (2023). https://doi.org/10.1002/zamm.202200319

  49. A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications (McGraw-Hill Book Co, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinesh Kumar Sharma, Nisha Rana or Nantu Sarkar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Rana, N. & Sarkar, N. Transient Response of a Nonlocal Viscoelastic Cylinder with Double Porosity. Mech. Solids 58, 1912–1927 (2023). https://doi.org/10.3103/S0025654423600964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600964

Keywords:

Navigation