Skip to main content
Log in

Studying the Properties of Metamaterials with a Negative Poisson’s Ratio when Punched by a Rigid Impactor

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Some properties of metamaterials with a negative Poisson’s ratio (auxetics) have been studied experimentally when punched along the normal by a rigid spherical impactor. Samples of a metamaterial with a chiral structure (hexachirals honeycomb) are made of e-PLA plastic using a 3D printer. In experiments, a deviation of the direction of movement of the impactor after leaving the punched sample from the approach direction (normal to the side surface) is observed. The dependence of the impactor projection direction on the orientation of the elements of chiral symmetry of the samples is established. A FE model for calculating the penetration of a chiral structure has been developed. Numerical results are presented and their agreement with experimental data is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T.-C. Lim, Auxetic Materials and Structures (Springer Singapore, 2015). https://doi.org/10.1007/978-981-287-275-3

    Book  Google Scholar 

  2. H. M. A. Kolken and A. A. Zadpoor, “Auxetic mechanical metamaterials,” RSC Adv. 7 (9), 5111–5129 (2017). https://doi.org/10.1039/C6RA27333E

    Article  ADS  Google Scholar 

  3. X. Ren, R. Das, P. Tran, et al., “Auxetic metamaterials and structures: a review,” Smart Mater. Struct. 27 (2), 023001 (2018). https://doi.org/10.1088/1361-665X/aaa61c

  4. W. Wu, W. Hu, G. Qian, et al., “Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review,” Mater. Des. 180, 107950 (2019). https://doi.org/10.1016/j.matdes.2019.107950

  5. V. A. Gorodtsov and D. S. Lisovenko, “Auxetics among materials with cubic anisotropy,” Mech. Solids 55, 461–474 (2020). https://doi.org/10.3103/S0025654420040044

    Article  ADS  Google Scholar 

  6. M. V. Shitikova, “Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review,” Mech. Solids 57, 1–33 (2022). https://doi.org/10.3103/S0025654422010022

    Article  ADS  MATH  Google Scholar 

  7. Y. Gao and H. Huang, “Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio,” Mech. Solids. 57 (5), 1118–1133 (2022). https://doi.org/10.3103/S0025654422050053

    Article  ADS  Google Scholar 

  8. V. V. Skripnyak, M. O. Chirkov, and V. A. Skripnyak, “Modeling the mechanical response of auxetic metamaterials to dynamic effects,” Vestn. PNIPU. Mekh., No. 2, 144–152 (2021). https://doi.org/10.15593/perm.mech/2021.2.13

  9. G. Imbalzano, P. Tran, P. V. S. Lee, et al., “Influences of material and geometry in the performance of auxetic composite structure under blast loading,” Appl. Mech. Mater. 846, 476–481 (2016). https://doi.org/10.4028/www.scientific.net/amm.846.476

    Article  Google Scholar 

  10. X. Zhao, Q. Gao, L., Wang et al., “Dynamic crushing of double-arrowed auxetic structure un-der impact loading,” Mater. Des. 160, 527–537 (2018). https://doi.org/10.1016/j.matdes.2018.09.041

    Article  Google Scholar 

  11. C. Li, H. S. Shen, and H. Wang, “Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core,” Nonlin. Dyn. 100, 3235–3252 (2020). https://doi.org/10.1007/s11071-020-05686-4

    Article  Google Scholar 

  12. J. X. Qiao and C. Q. Chen, “Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs,” Inter. J. Impact Eng. 83, 47–58 (2015). https://doi.org/10.1016/j.ijimpeng.2015.04.005

    Article  Google Scholar 

  13. N. Novak, L. Starcevic, M., Vesenjak et al., “Blast response study of the sandwich composite panels with 3D chiral auxetic core.” Compos. Struct. 210, 167–178 (2019). https://doi.org/10.1016/j.compstruct.2018.11.050

    Article  Google Scholar 

  14. S. Y. Ivanova, K. Y. Osipenko, V. A. Kuznetsov, et al., “Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers,” Mech. Solids 58, 524–528 (2023). https://doi.org/10.3103/S0025654422601616

    Article  ADS  Google Scholar 

  15. R. Lakes, “Deformation mechanisms in negative Poisson’s ratio materials: structural aspects,” J. Mater. Sci. 26, 2287–2292 (1991). https://doi.org/10.1007/BF01130170

    Article  ADS  Google Scholar 

  16. J. N. Grima, R. Gatt, and P.-S. Farrugia, “On the properties of auxetic meta-tetrachiral structures,” Phys. Status Solidi B 245 (3), 511–520 (2008). https://doi.org/10.1002/pssb.200777704

    Article  ADS  Google Scholar 

  17. A. Alderson, K. Alderson, D. Attard, et al., “Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos. Sci. Technol. 70, 1042–1048 (2010). https://doi.org/10.1016/j.compscitech.2009.07.009

    Article  Google Scholar 

  18. F. F. Vitman and B. S. Ioffe, “A simple method of determining dynamic hardness of metals using a double cone,” Zavod. Lab. 14 (6), 727–732 (1948).

    Google Scholar 

  19. F. F. Vitman and V. A. Stepanov, “Effect of the strain rate on the resistance of metals to deformation at impact velocities of 100–1000 m/s,” in Some Problems of the Strength of Solids (AN SSSR, Moscow, 1959), pp. 207–221 [in Russian].

    Google Scholar 

  20. M. A. Kanibolotskii and Yu. S. Urzhumtsev, Optimal Design of Layered Structures (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  21. N. V. Banichuk, S. Yu. Ivanova, E. V. Makeev, and A. I. Turutko, “Some analytical and computational estimates of parameters of optimal protective plate structure,” Probl. Prochn. Plast. 75 (3), 206–214 (2013). https://doi.org/10.32326/1814-9146-2013-75-3-206-214

    Article  Google Scholar 

  22. G. Ben-Dor, A. Dubinsky, and T. Elperin, Applied High-Speed Plate Penetration Dynamics (Springer, Dordrecht, 2006).

    MATH  Google Scholar 

  23. N. V. Banichuk and S. Yu. Ivanova, Optimal Structural Design: Contact Problems and High-Speed Penetration (Fizmatlit, Moscow, 2016; De Gruyter, 2017).

  24. Yu. K. Bivin, V. A. Kolesnikov, and L. M. Flitman, “Determination of the mechanical properties of a medium by the dynamic penetration method,” Mech. Solids 17 (5), 180–183 (1982).

    Google Scholar 

  25. G. Ben-Dor, A. Dubinsky, and T. Elperinm, “Modeling of high-speed penetration into concrete shields and shape optimization of impactors,” Mech. Based Des. Struct. Mach. 34 (2), 139–156 (2006). https://doi.org/10.1080/15397730600663398

    Article  Google Scholar 

  26. N. V. Banichuk and S. Yu. Ivanova, “Shape optimization of rigid body, penetrating into continuous medium,” Probl. Prochn. Plast., No. 69, 47–58 (2007). https://doi.org/10.32326/1814-9146-2007-69-1-47-58

  27. G. Ben-Dor, A. Dubinsky, and T. Elperin, “High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields,” Mech. Based Des. Struct. Mach. 37 (4), 538–549 (2009). https://doi.org/10.1080/15397730903272830

    Article  Google Scholar 

  28. Cuncheng Shi, Mingyang Wang, Jie Li, and Mengshen Li, “A model of depth calculation for projectile penetration into dry sand and comparison with experiments,” Int. J. Impact Eng. 73, 112–122 (2014). https://doi.org/10.1016/j.ijimpeng.2014.06.010

    Article  Google Scholar 

Download references

Funding

The study was supported by the Government program of IPMech RAS (state registration numbers 123021700050-1, 123021700045-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Lisovenko.

Additional information

Translated by A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, S.Y., Osipenko, K.Y., Demin, A.I. et al. Studying the Properties of Metamaterials with a Negative Poisson’s Ratio when Punched by a Rigid Impactor. Mech. Solids 58, 1536–1544 (2023). https://doi.org/10.3103/S0025654423600897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600897

Keywords:

Navigation