Skip to main content
Log in

Study on Plastic Penetration Behavior and Penetration Model of Spherical Tungsten Alloy Projectile

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The plastic deformation of the spherical tungsten alloy projectile during penetration results in the change of penetration rule. To accurately calculate the penetration depth of the projectile into the low carbon steel target, the concept of projectile shape coefficient was introduced according to the shape of the experimentally recovered projectile, and the deformation penetration process of the projectile was simplified into the rigid penetration process with different shape coefficients at different impact velocities. The rigid penetration model of the spherical, ellipsoidal, and truncated sphere projectile was constructed. The calculation results show that the accuracy of the three models is close to each other. On this basis, the heat map analysis method is used to correlate the impact velocity with the projectile shape coefficient, and a piecewise calculation model of the penetration depth of the spherical projectile is constructed. The error between calculation results and experiment results is less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Y. X. Dong, S. S. Feng, X. J. Duan, et al. “Crater characteristics of tungsten spheres impacting steel target,” Adv. Mater. Res. 160–162, 1022–1027 (2010). https://doi.org/10.4028/www.scientific.net/AMR.160-162.1022

  2. T. Y. Zhao, W. Z. Wang, Z. G. Chen, et al. “Dynamic response characteristics of 93W alloy with a spherical structure,” Open Phys. 18 (1), 199–211 (2020). https://doi.org/10.1515/phys-2020-0111

    Article  Google Scholar 

  3. P. Hu, S. Q. Wang, X. W. Feng, et al. “Experimental investigation on failure behaviors of G50 ultra-high strength steel targets struck by tungsten alloy spherical fragments at high velocity,” Front. Mater. 7, (2021). https://doi.org/10.3389/fmats.2020.618771

  4. X. Wang, X. Q. Zhi, J. B. Xu, et al. “dimensional analysis of ballistic limit of spherical fragments penetrating multi-layer plate,” Chin. J. High Press. Phys. (2019). https://doi.org/10.11858/gywlxb.20190757

  5. R. L. Martineau, M. B. Prime, and T. Duffey. “Penetration of HSLA-100 steel with tungsten carbide spheres at striking velocities between 0.8 and 2.5km/s,” Int. J. Impact Eng. 30 (5), 505–520 (2004). https://doi.org/10.1016/S0734-743X(03)00080-0

    Article  Google Scholar 

  6. P. J. Hazell, G. J. Appleby-Thomas, K. Herlaar, et al. “Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions,” Mater. Sci. Eng. A. 527 (29), 7638–7645 (2010). https://doi.org/10.1016/j.msea.2010.08.024

    Article  Google Scholar 

  7. L. Liu, Y. Fan, W. Li, et al. “Cavity dynamics and drag force of high-speed penetration of rigid spheres into 10wt% gelatin,” Int. J. Impact Eng. 50, 68–75 (2012). https://doi.org/10.1016/j.ijimpeng.2012.06.004

    Article  Google Scholar 

  8. J. C. Cheng, S. P. Zhao, D. Fan, et al. “Multiple ballistic impacts on 2024-T4 aluminum alloy by spheres: Experiments and modeling,” J. Mater. Sci. Technol. 94, 164–174 (2021). https://doi.org/10.1016/j.jmst.2021.04.012

    Article  Google Scholar 

  9. J. C. Cheng, S. Zhang, Q. Liu, et al. “Ballistic impact experiments and modeling on impact cratering, deformation and damage of 2024-T4 aluminum alloy,” Int. J. Mech. Sci. 224, 107312 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107312

  10. Y. L. Bian, Q. Liu, Z. D. Feng, et al. “High-speed penetration dynamics of polycarbonate,” Int. J. Mech. Sci. 223, 107250 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107250

  11. J. X. Wang and N. Zhou, “Experimental and numerical study of the ballistic performance of steel fibre-reinforced explosively welded targets impacted by a spherical fragment,” Compos. Part B: Eng. 75, 65–72 (2015). https://doi.org/10.1016/j.compositesb.2015.01.023

    Article  Google Scholar 

  12. H. K. Wang, Z. F. Li, Z. H. Zhang, et al. “Microstructure evolution of 6252 armor steel under hypervelocity impact.,” Int. J. Impact Eng. 170, 104356 (2022). https://doi.org/10.1016/j.ijimpeng.2022.104356

  13. G. Seisson, D. Hebert, L. Hallo, et al. “Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities,” Int. J. Impact Eng. 70, 14–20 (2014). https://doi.org/10.1016/j.ijimpeng.2014.03.004

    Article  Google Scholar 

  14. P. J. Hazell, A. Cowie, G. Kister, et al. “Penetration of a woven CFRP laminate by a high velocity steel sphere impacting at velocities of up to 1875m/s,” Int. J. Impact Eng. 36 (9), 1136–1142 (2009). https://doi.org/10.1016/j.ijimpeng.2008.12.001

    Article  Google Scholar 

  15. C. E. Anderson, J. Riegel, and P. Kester, “A penetration model for metallic targets based on experimental data,” Int. J. Impact Eng. 80, 24–35 (2015). https://doi.org/10.1016/j.ijimpeng.2014.12.009

    Article  Google Scholar 

  16. C. E. Anderson Jr., “Analytical models for penetration mechanics: A Review,” Int. J. Impact Eng. 108, 3–26 (2017). https://doi.org/10.1016/j.ijimpeng.2017.03.018

    Article  Google Scholar 

  17. W. Schonberg and S. Ryan, “Predicting metallic armour performance when impacted by fragment-simulating projectiles – Model adjustments and improvements,” Int. J. Impact Eng. 161, 104090 (2022). https://doi.org/10.1016/j.ijimpeng.2021.104090

  18. W. Schonberg and S. Ryan, “Predicting metallic armour performance when impacted by fragment-simulating projectiles – model review and assessment,” Int. J. Impact Eng. 158, 104025 (2021). https://doi.org/10.1016/j.ijimpeng.2021.104025

  19. R. F. Recht and T. W. Ipson, “Ballistic perforation dynamics,” J. Appl. Mech. 30 (3), 384–390 (1963). https://doi.org/10.1115/1.3636566

    Article  ADS  Google Scholar 

  20. X. W. Chen and Q. M. Li “Transition from nondeformable projectile penetration to semi-hydro dynamic penetration,” J. Eng. Mech. 130 (1), 123 (2004). https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(123)

    Article  Google Scholar 

  21. S. E. Jonses and W. K. Rule, “On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction,” Int. J. Impact Eng. 24 (4), 403–415 (2000). https://doi.org/10.1016/S0734-743X(99)00157-8

    Article  Google Scholar 

  22. X. W. Chen and Q. M. Li “Deep penetration of a non-deformable projectile with different geometrical characteristics,” Int. J. Impact Eng. 27 (6), 619–637 (2002). https://doi.org/10.1016/S0734-743X(02)00005-2

    Article  Google Scholar 

  23. W. J. Jiao and X. W.Chen, “Influence of the mushroomed projectile’s head geometry on long-rod penetration,” Int. J. Impact Eng. 148, 103769 (2021). https://doi.org/10.1016/j.ijimpeng.2020.103769

  24. M. Wickert, “Penetration data for a medium caliber tungsten sinter alloy penetrator into aluminum alloy 7020 in the velocity range of 250M/S to 1900M/S,” in Proceedings of the 23Rd International Symposium on Ballistics, Tarragona, Spain, 16–20 April 2007 (Univ. Politécnica de Madrid, 2007), pp. 1437–1444.

  25. M. J. Forrestal and J. A. Piekutowski, “Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s,” Int. J. Impact Eng. 24 (1), 57–67 (2000). https://doi.org/10.1016/S0734-743X(99)00033-0

    Article  Google Scholar 

  26. V. Hohler and Aj. Stilp, “Hypervelocity impact of rod projectiles with L/D from 1 to 32,” Int. J. Impact Eng. 5 (14), 32331 (1987). https://doi.org/10.1016/0734-743X(87)90049-2

    Article  Google Scholar 

  27. P. J. Hazell, N. A. Fellows, and J. G. Heterington, “A note on the behind amour effects from perforated alumina/aluminium targets,” Int. J. Impact Eng. 21 (7), 589–595 (1998). https://doi.org/10.1016/S0734-743X(98)00014-1

    Article  Google Scholar 

  28. T. L. Liu, Y. X. Xu, X. F. Wang, et al. “A calculation model of tungsten ball penetration depth considering projectile deformation,” Acta Armamentarii (2022). https://doi.org/10.12382/bgxb.2022.1013

  29. M. J. Forrestal and V. K. Luk, “Dynamic spherical cavity-expansion in a compressible elastic-plastic solid,” J. Appl. Mech. 55 (2), 275–279 (1988). https://doi.org/10.1115/1.1985428

    Article  ADS  Google Scholar 

  30. X. Q. Ma, Q. M. Zhang, and X. W. Zhang, “A model for rigid asymmetric ellipsoidal projectiles penetrating into metal plates,” Int. J. Impact Eng. 163, 104140 (2022). https://doi.org/10.1016/j.ijimpeng.2021.104140

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. L. Liu or Y. X. Xu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T.L., Xu, Y.X., Ren, J. et al. Study on Plastic Penetration Behavior and Penetration Model of Spherical Tungsten Alloy Projectile. Mech. Solids 58, 1865–1877 (2023). https://doi.org/10.3103/S0025654423600812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600812

Keywords:

Navigation