Skip to main content
Log in

Modified Moore–Gibson–Thompson Thermoelastic Model with Hyperbolic Two Temperatures Effect on Semiconducting Thermoelastic Solid Cylinder

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The goal of this study is to examine the photo-thermoelastic interactions in an infinite semiconducting solid cylinder with rotation subjected to an exponential laser pulse as a variable heat flux along the boundary surface. A Moore-Gibson-Thompson-Photo-Thermal (MGTPT) equation with hyperbolic two temperatures is used to express the equations that govern heat conduction in deformable bodies based on the difference between conductive and dynamic temperature acceleration. Proposed mathematical model is solved in a transformed domain using the Laplace transform. For computing displacement components, conductive temperature, thermal stresses, and carrier density in the physical domain, numerical inversion is used. A graphic representation of all the parameters are generated using MATLAB software to illustrate the effect of thermal relaxations as well as different theories of thermoelasticity with two temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2 .
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. M. Duhamel, “Memories of the molecular actions developed by changes in temperatures in solids,” Mummy Div. Sav. Acad. Sci Par. 5, 440–498 (1938).

    Google Scholar 

  2. M. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys. 27, 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C. Cattaneo, “A form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Comp. Rend. Acad. Sci. Paris, Ser. II 247, 431–433 (1958).

  4. P. Vernotte, “Les paradoxes de la theorie continue de l’equation de lachaleur,” Comp. Rend. Acad. Sci. Paris, Ser. II 246, 3154–3155 (1958).

    MATH  Google Scholar 

  5. P. Vernotte, “Some possible complications in the phenomena of thermal conduction,” Comp. Rend. Acad. Sci. Paris, Ser. II 252, 2190–2191(1961).

    MathSciNet  Google Scholar 

  6. H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  MATH  Google Scholar 

  7. P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures,” ZAMP 19, 614–627 (1968). https://doi.org/10.1007/BF01594969

    Article  ADS  MATH  Google Scholar 

  8. A. E. Green and K.A. Lindsay, “Thermoelasticity,” J. Elasticity 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  9. R. S. Dhaliwal and H.H. Sheriff, “Generalized thermoelasticity for anisotropic media,” Quart. Appl. Math. 38, 1–8 (1980). https://doi.org/10.1090/qam/575828

    Article  MathSciNet  MATH  Google Scholar 

  10. A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 432, 171–194 (1991). https://doi.org/10.1098/rspa.1991.0012

    Article  MATH  Google Scholar 

  11. A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress. 15, 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  ADS  MathSciNet  Google Scholar 

  12. A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity 31, 189–208 (1993). https://doi.org/10.1007/BF00044969

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Lasiecka and X. Wang, “Moore-Gibson-Thompson equation with memory, part II: general decay of energy,” Anal. PDEs. 1–22 (2015). https://doi.org/10.48550/arXiv.1505.07525

  14. R. Quintanilla, “Moore–Gibson–Thompson thermoelasticity,” Math. Mech. Solids 24, 4020–4031 (2019). https://doi.org/10.1177/1081286519862007

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Quintanilla, “Moore-Gibson-Thompson thermoelasticity with two temperatures,” Appl. Eng. Sci. 1, 100006 (2020). https://doi.org/10.1016/j.apples.2020.100006

  16. J. R. Fernández and R. Quintanilla, “Moore-Gibson-Thompson theory for thermoelastic dielectrics,” Appl. Math. Mech. 422, 309–316 (2021). https://doi.org/10.1007/S10483-021-2703-9

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Bazarra, J. R. Fernández, and R. Quintanilla, “Analysis of a Moore-Gibson-Thompson thermoelastic problem,” J. Comput. Appl. Math. 382, 113058 (2021). https://doi.org/10.1016/j.cam.2020.113058

  18. H. M. Youssef, “Theory of generalized thermoelasticity with fractional order strain,” J. Vib. Contr. 22, 3840–3857 (2016). https://doi.org/10.1177/1077546314566837

    Article  MathSciNet  MATH  Google Scholar 

  19. H. M. Youssef and A. A. El-Bary, “Theory of hyperbolic two-temperature generalized thermoelasticity,” Mater. Phys. Mech. 40, 158–171 (2018). https://doi.org/10.18720/MPM.4022018_4

    Article  Google Scholar 

  20. I. Kaur, K. Singh, and E.-M. Craciun, “A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore–Gibson–Thompson heat transfer under the hall effect,” Math. 10, 2386 (2022). https://doi.org/10.3390/math10142386

    Article  Google Scholar 

  21. I. Kaur, P. Lata, and K. Singh, “Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures,” Int. J. Mech. Mater. Eng. 15, 10 (2020). https://doi.org/10.1186/s40712-020-00122-2

    Article  Google Scholar 

  22. I. Kaur, K. Singh, and E.-M. Craciun, “New modified couple stress theory of thermoelasticity with hyperbolic two temperature,” Math. 11, 432 (2023). https://doi.org/10.3390/math11020432

    Article  Google Scholar 

  23. I. Kaur, K. Singh, and E.-M. Craciun, “Recent advances in the theory of thermoelasticity and the modified models for the nanobeams: a review,” Discov. Mech. Eng. 2, 2 (2023). https://doi.org/10.1007/s44245-023-00009-4

    Article  Google Scholar 

  24. I. Kaur, K. Singh, G. M. D. Ghita, and E.-M. Craciun, “Modeling of a magneto-electro-piezo-thermoelastic nanobeam with two temperature subjected to ramp type heating,” Proc. Roman. Acad., Ser. A 23, 141–149 (2022).

    Google Scholar 

  25. E. M. Craciun, E. Baesu, and E. Soós, “General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: Application to Mode III fracture propagation,” IMA J. Appl. Math. 70, 39–52 (2005). https://doi.org/10.1093/IMAMAT/HXH060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. N. D. Cristescu, E. M. Craciun, and E. Soós, Mechanics of Elastic Composites (Chapman and Hall/CRC, New York, 2003). https://doi.org/10.1201/9780203502815

  27. P. Lata, I. Kaur, and K. Singh, “Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources,” Arab J. Basic Appl. Sci. 27, 259–269 (2020). https://doi.org/10.1080/25765299.2020.1781328

    Article  Google Scholar 

  28. M. Jafari, M.H.B. Chaleshtari, H. Abdolalian, et al., “Determination of forces and moments per unit length in symmetric exponential fg plates with a quasi-triangular hole,” Symmetry 12, 834–850 (2020). https://doi.org/10.3390/sym12050834

    Article  ADS  Google Scholar 

  29. I. Kaur and K. Singh, “A study of influence of hall effect in semiconducting spherical shell with Moore-Gibson-Thompson-photo-thermoelastic model,” Iran. J. Sci. Technol. Trans. Mech. Eng. (2022). https://doi.org/10.1007/s40997-022-00532-x

  30. I. Kaur and K. Singh, “Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer,” Int. J. Mech. Mater. Eng. 16, 1–16 (2021). https://doi.org/10.1186/S40712-021-00137-3/FIGURES/16

    Article  Google Scholar 

  31. I. Kaur and K. Singh, “The two-temperature effect on a semiconducting thermoelastic solid cylinder based on the modified Moore – Gibson – Thompson heat transfer,” St. Petersbg. Polytech. Univ. J. Phys. Math. 16, 65–81 (2023). https://doi.org/10.18721/JPM.16106

  32. E. M. Craciun, A. Carabineanu, and N. Peride, “Antiplane interface crack in a pre-stressed fiber-reinforced elastic composite,” Comput. Mater. Sci. 43, 184–189 (2008). https://doi.org/10.1016/j.commatsci.2007.07.028

    Article  Google Scholar 

  33. S. Malik, D. Gupta, K. Kumar, et al., “Reflection and transmission of plane waves in nonlocal generalized thermoelastic solid with diffusion,” Mech. Solids 58, 161–188 (2023). https://doi.org/10.3103/S002565442260088X

    Article  ADS  Google Scholar 

  34. A. M. S. Mahdy, K. Lotfy, M. H. Ahmed, et al., “Electromagnetic Hall current effect and fractional heat order for microtemperature photo-excited semiconductor medium with laser pulses,” Results Phys. 17, 103161 (2020). https://doi.org/10.1016/j.rinp.2020.103161

  35. A. E. Abouelregal and D. Atta, “A rigid cylinder of a thermoelastic magnetic semiconductor material based on the generalized Moore–Gibson–Thompson heat equation model,” Appl. Phys. A Mater. Sci. Proc. 128, 1–14 (2022). https://doi.org/10.1007/S00339-021-05240-Y/TABLES/7

    Article  Google Scholar 

  36. W. H. Press, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in Fortran (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Not applicable

Funding

No fund /grant / scholarship has been taken for the research work

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iqbal Kaur or Kulvinder Singh.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Iqbal Kaur: Idea formulation, Conceptualization, Formulated strategies for mathematical modelling, methodology refinement, Formal analysis, Validation, Writing- review and editing.

Kulvinder Singh: Conceptualization, Effective literature review, Experiments and Simulation, Investigation, Methodology, Software, Supervision, Validation, Visualization, Writing - original draft.

Both authors read and approved the final manuscript.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Singh, K. Modified Moore–Gibson–Thompson Thermoelastic Model with Hyperbolic Two Temperatures Effect on Semiconducting Thermoelastic Solid Cylinder. Mech. Solids 58, 1723–1737 (2023). https://doi.org/10.3103/S0025654423600745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600745

Keywords:

Navigation