Skip to main content
Log in

Extensional Analysis of an Axially Loaded Functionally Graded Piezoelectric Semiconductor Rod with Electrical Nonlinearity

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Based on the nonlinear constitutive equations, we investigate an axially loaded functionally graded piezoelectric semiconductor (FGPS) rod. For the FGPS rod with a linear graded distribution of elastic constants along the axial direction, the one-dimensional (1D) nonlinear coupled equations for pure extensional deformation rod with electrical nonlinearity are presented. The classical Newton-Raphson method is used to solve such a nonlinear problem. The multi-field coupling responses of the axially loaded FGPS rod under different initial concentrations of electrons, axial forces, and gradient factors are numerically studied. Numerical results show the gradient factor as well as the initial concentration of electrons has a significant effect on the distribution of each physical field in the FGPS rod, and could be helpful for the development of semiconductor devices with functionally graded piezoelectric semiconductor structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. S. Pulskamp, R. G. Polcawich, R. Q. Rudy, et al., “Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications,” MRS Bull. 37 (11), 1062–1070 (2012). https://doi.org/10.1557/mrs.2012.269

    Article  Google Scholar 

  2. X. Yu, Z. Xie, Y. Yu, et al. “Skin-integrated wireless haptic interfaces for virtual and augmented reality,” Nature 575 (7783), 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0

    Article  ADS  Google Scholar 

  3. J. A. Guggenheim, J. Li, T. J. Allen, et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11 (11), 714–719 (2017). https://doi.org/10.1038/s41566-017-0027-x

    Article  ADS  Google Scholar 

  4. C. Pan, J Zhai, and Z. L. Wang, “Piezotronics and piezo-phototronics of third generation semiconductor nanowires,” Chem. Rev. 119 (15), 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599

    Article  Google Scholar 

  5. W. Z. Wu, and Z. L. Wang, “Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics,” Nat. Rev. Mater. 1 (7), 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31

    Article  ADS  Google Scholar 

  6. Y. Zhang, Y. Leng, M. Willatzen, et al., “Theory of piezotronics and piezo-phototronics,” MRS Bull. 43 (12), 928–935 (2018). https://doi.org/10.1557/mrs.2018.297

    Article  ADS  Google Scholar 

  7. Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices,” Adv. Mater. 15(5), 432–436 (2003). https://doi.org/10.1002/adma.200390100

    Article  Google Scholar 

  8. Z. X. Xu, Y. L. Zhang, and Z. N. Wang, “ZnO-based photodetector: From photon detector to pyro-phototronic effect enhanced detector,” J. Phys. D: Appl. Phys. 52, 223001 (2019). https://doi.org/10.1088/1361-6463/ab0728

  9. L. Lee, J. Huang, J. W. Jung, et al., “ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors,” Nat. Commun. 10, 1998 (2019). https://doi.org/10.1038/s41467-019-09998-x

    Article  ADS  Google Scholar 

  10. J. Y. Xuan, G. D. Zhao, M. L. Sun, et al., “Low-temperature operating ZnO-based NO2 sensors: A review,” RSC Adv. 10, 39786–39087 (2020). https://doi.org/10.1039/D0RA07328H

    Article  ADS  Google Scholar 

  11. W. L. Yang, Y. T. Hu, and J. S. Yang, “Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force,” Mater. Res. Express 6 (2), 025902 (2019). https://doi.org/10.1088/2053-1591/aaecbb

  12. Y. Liang, W. Yang, and J. Yang, “Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force,” Acta Mech. Solida Sin. 32 (6), 688–697 (2019). https://doi.org/10.1007/s10338-019-00109-3

    Article  Google Scholar 

  13. S. Fan, Y. Hu, and J. Yang, “Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber,” Appl. Math. Mech. 40 (5), 591–600 (2019). https://doi.org/10.1007/s10483-019-2481-6

    Article  MathSciNet  Google Scholar 

  14. C. L. Zhang, X. Y. Wang, W. Q. Chen, et al., “Propagation of extensional waves in a piezoelectric semiconductor rod,” AIP Adv. 6 (4), 045301 (2016). https://doi.org/10.1063/1.4945752

  15. G. Y. Yang, J. K. Du, J. Wang, et al. “Electromechanical fields in a nonuniform piezoelectric semiconductor rod,” J. Mech. Mater. Struct. 13 (1), 103–120 (2018). https://doi.org/10.2140/jomms.2018.13.103

    Article  MathSciNet  Google Scholar 

  16. G. Bao, D. Li, D. Kong, et al., “Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity,” Int. J. Appl. Mech. 14 (10), 2250104 (2022). https://doi.org/10.1142/S1758825122501046

  17. D. Li, C. Zhang, S. Zhang, et al., “Propagation of terahertz elastic longitudinal waves in piezoelectric semiconductor rods,” Ultrasonics 132, 106964 (2023). https://doi.org/10.1016/j.ultras.2023.106964

  18. D. Li, S. Li, C. Zhang, et al., “Propagation characteristics of shear horizontal waves in piezoelectric semiconductor nanoplates incorporating surface effect,” Int. J. Mech. Sci. 247, 108201 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108201

  19. J. S. Yang, X. M. Yang, and J. A. Turner, “Amplification of acoustic waves in laminated piezoelectric semiconductor plates,” Arch. Appl. Mech. 74 (3), 288–298 (2004). https://doi.org/10.1007/s00419-004-0350-9

    Article  ADS  MATH  Google Scholar 

  20. Y. T. Guo, C. L. Zhang, W. Q. Chen, et al., “Interaction between torsional deformation and mobile charges in a composite rod of piezoelectric dielectrics and nonpiezoelectric semiconductors,” Mech. Adv. Mater. Struct. 29 (10), 1449–1455 (2020). https://doi.org/10.1080/15376494.2020.1822477

    Article  Google Scholar 

  21. C. Liang, C. Zhang, W. Chen, et al., “Electrical response of a multiferroic composite semiconductor fiber under a local magnetic field,” Acta Mech. Solida Sin. 33 (5), 663–673 (2020). https://doi.org/10.1007/s10338-020-00163-2

    Article  Google Scholar 

  22. C. Liang, C. Zhang, W. Chen, et al., “Effects of magnetic fields on PN junctions in piezomagnetic–piezoelectric semiconductor composite fibers,” Int. J. Appl. Mech. 12 (08), 2050085 (2020). https://doi.org/10.1142/S1758825120500854

  23. L. Sun, Z. Zhang, C. Gao, et al., “Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer,” J. Appl. Phys. 129 (24), 244102 (2021). https://doi.org/10.1063/5.0050947

  24. Y. Qu, F. Jin, and J. Yang, “Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors,” J. Appl. Phys. 127 (19), 194502 (2020). https://doi.org/10.1063/5.0005124

  25. C. Ren, K. F. Wang, and B. L. Wang, “Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects,” J. Appl. Phys. 128 (21), 215701 (2020). https://doi.org/10.1063/5.0028923

  26. M. Zhao, Z. Ma, C. Lu, et al., “Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber,” Appl. Math. Mech. 42 (5), 665–676 (2021). https://doi.org/10.1007/s10483-021-2726-5

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Guo, Y. Li, G. Qin, et al., “Nonlinear solutions of PN junctions of piezoelectric semiconductors,” Acta Mech. 230 (5), 1825–1841 (2019). https://doi.org/10.1007/s00707-019-2361-1

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Bao, D. Li, D. Kong, et al., “Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity,” Int. J. Appl. Mech. 14, 2250104 (2022). https://doi.org/10.1142/S1758825122501046

  29. H. Lu, D. Young, J. Sladek, et al., “Three-dimensional analysis for functionally graded piezoelectric semiconductors,” J. Intell. Mater. Syst. Struct. 28 (11), 1391–1406 (2017). https://doi.org/10.1177/1045389X16672566

    Article  Google Scholar 

  30. J. Sladek, V. Sladek, H. Lu, et al., “The FEM analysis of FGM piezoelectric semiconductor problems,” Compos. Struct. 163, 13–20 (2017). https://doi.org/10.1016/j.compstruct.2016.12.019

    Article  Google Scholar 

  31. W. H. Wang, L. Li, M. Lan, et al., “Surface wave speed of functionally gradient piezoelectric semiconductors,” Arch. Appl. Mech. 92 (6), 1905–1912 (2022). https://doi.org/10.1007/s00419-022-02155-9

    Article  ADS  Google Scholar 

  32. C. L. Zhang, X. Y. Wang, W. Q. Chen, et al., “An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force,” Smart Mater. Struct. 26 (2), 025030 (2017). https://doi.org/10.1088/1361-665X/aa542e

  33. Z. Zhang, C. Liang, Y. Wang, et al., “Static bending and vibration analysis of piezoelectric semiconductor beams considering surface effects,” J. Vib. Eng. Technol. 9, 1789–1800 (2021). https://doi.org/10.1007/s42417-021-00328-4

    Article  Google Scholar 

  34. Z. L. Wang, R. Yang, J. Zhou, et al., “Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics,” Mater. Sci. Eng.: R: Rep. 70 (3), 320–329 (2010). https://doi.org/10.1016/j.mser.2010.06.015

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Project of Henan Province (nos. 232102240061 and 222102320450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Z. Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y.P., Li, D.Z. Extensional Analysis of an Axially Loaded Functionally Graded Piezoelectric Semiconductor Rod with Electrical Nonlinearity. Mech. Solids 58, 1606–1614 (2023). https://doi.org/10.3103/S0025654423600472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600472

Keywords:

Navigation