Skip to main content
Log in

Fundamental Solutions of the Equations of the Oscillation Theory for Anisotropic Elastic Media

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The construction of fundamental solutions in R3 for the equations of harmonic vibrations in the theory of elasticity of anisotropic elastic media is carried out. Solutions are constructed in the form of multipole series. Theorems on the convergence of series in the topology of compact convergence in \({{R}^{{\text{3}}}}{{\backslash }}0\) are proved. The problems on constructing some singular solutions of the theory of vibrations of an anisotropic body are discussed. The fundamental solution of the oscillation equations for an isotropic medium is obtained in a closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. D. Kupradze, “Boundary problems of the theory of steady elastic vibrations,” Uspekhi Mat. Nauk 8 (3), 21–74 (1953).

    MathSciNet  Google Scholar 

  2. V. D. Kupradze, Dynamical Problems in Elasticity (North-Holland Publ. Comp., Amsterdam, 1963).

    Google Scholar 

  3. T. Burchuladze, “Non-stationary problems of generalized elastothermodiffusion for inhomogeneous media,” Georgian Math. 1, 587–598 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, New York, 1998).

    Book  MATH  Google Scholar 

  5. W. McLean, Strongly Elliptic Systems and Boundary Integral Operators (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  6. Ch. Constanda, D. Doty, and W. Hamill, Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation (Springer New York, 2016).

    Book  MATH  Google Scholar 

  7. V. D. Kupradze, M. O. Basheleishvili, and T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, Vol. 25 (North-Holland Publ. Co., Amsterdam, 1979).

    Google Scholar 

  8. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience Tracts in Pure and Applied Mathematics, Vol. 2 (Interscience Publ., New York, 1955).

    Google Scholar 

  9. M. Grosser, et al., Geometric Theory of Generalized Functions with Applications to General Relativity (Kluwer Acad. Publ., Berlin, 2001).

    Book  MATH  Google Scholar 

  10. R. B. Wilson and T. A. Cruse, “Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis,” Int. J. Num. Meth. Eng. 12 (9), 1383–1397 (1978). https://doi.org/10.1002/nme.1620120907

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Deb, D. P. Henry, Jr., and R. B. Wilson, “Alternate BEM formulation for 2- and 3D anisotropic thermoelasticity,” Int. J. Solids Struct. 27 (13), 1721–1738 (1991). https://doi.org/10.1016/0020-7683(91)90071-M

    Article  MATH  Google Scholar 

  12. S. V. Kuznetzov, “Closed form analytical solution for dispersion of Lamb waves in FG plates,” Wave Motion 84, 1–7 (2019). https://doi.org/10.1016/j.wavemoti.2018.09.018

    Article  ADS  MathSciNet  Google Scholar 

  13. S. V. Kuznetsov, “Fundamental and singular solutions of Lamé equations of media with arbitrary anisotropy,” Quart. Appl. Math. 63 (3), 455–467 (2005). https://doi.org/10.1090/S0033-569X-05-00969-X

    Article  MathSciNet  Google Scholar 

  14. T. Gegelia and T. Buchukuri, “Some dynamic problems of the theory of electroelasticity,” Mem. Diff. Equat. Math. Phys. 10, 1–53 (1997).

    MathSciNet  MATH  Google Scholar 

  15. N. Bourbaki, Théories Spectrales, Ch. 1, 2 (Springer, Berlin, 2019).

    Book  MATH  Google Scholar 

  16. J.-A. Marti, “Nonlinear algebraic analysis of delta shock wave solutions to Burgers’ equation,” Pacific J. Math. 210, 165–187 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Gegelia and R. Chichinadze, “Boundary value problems of mechanics of continuum media for a sphere,” Mem. Dif. Equat. Math. Phys. 7, 1–222 (1996).

    MathSciNet  MATH  Google Scholar 

  18. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, Vol. 127 (Springer, Berlin, 1980).

    MATH  Google Scholar 

  19. G. Fairweather, A. Karageorghis, and P. A. Martin, “The method of fundamental solutions for scattering and radiation problems,” Eng. Anal. Bound. Elem. 27 (7), 759–769 (2003). https://doi.org/10.1016/S0955-7997(03)00017-1

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Iovane, A. V. Nasedkin, and F. Passarella, “Fundamental solutions in antiplane elastodynamic problem for anisotropic medium under moving oscillating source,” Eur. J. Mech. A/Solids 23 (6), 935–943 (2004). https://doi.org/10.1016/j.euromechsol.2004.09.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. G. Iovane, A. V. Nasedkin, and F. Passarella, “Moving oscillating loads in 2D anisotropic elastic medium: plane waves and fundamental solutions,” Wave Motion 43 (l), 51–66 (2005). https://doi.org/10.1016/j.wavemoti.2005.06.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. E. Kleiman and G. F. Roach, “On modified Green functions in exterior problems for the Helmholtz equations,” R. Soc. Lond. 383 (1785), 313–332 (1982). https://doi.org/10.1098/rspa.1982.0133

  23. R. E. Kleiman and G. F. Roach, “Boundary integral equation for the three-dimension Helmholtz equations,” SIAM Rev. 16 (2), 214–236 (1974). https://www.jstor.org/stable/2028461

    Article  MathSciNet  Google Scholar 

  24. S. V. Kuznetsov, “Surface waves of non-Rayleigh type,” Quart. Appl. Math. 61, 575–583 (2003). https://doi.org/10.1090/qam/1999838

    Article  MathSciNet  MATH  Google Scholar 

  25. S. A. Yang, “Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions,” J. Sound Vibr. 301 (3-5), 864–877 (2007). https://doi.org/10.1016/j.jsv.2006.10.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. Y. Wang and J. D. Achenbach, “Elastodynamic fundamental solutions for anisotropic solids,” Geophys. Int. J. 118 (2), 384–392 (1994). https://doi.org/10.1111/j.1365-246X.1994.tb03970.x

    Article  ADS  Google Scholar 

  27. F. Tonon, E. Pan, and B. Amadei, “Green’s functions and boundary element method formulation for 3D anisotropic media,” Comput. Struct. 79 (5), 469–482 (2001). https://doi.org/10.1016/S0045-7949(00)00163-2

    Article  Google Scholar 

  28. S. V. Kuznetsov, “On the operator of the theory of cracks,” C. R. Acad. Sci. Paris 323, 427–432 (1996).

    MATH  Google Scholar 

  29. A. V. Ilyashenko, et al., “Pochhammer–Chree waves: polarization of the axially symmetric modes,” Arch. Appl. Mech. 88, 1385–1394 (2018). https://doi.org/10.1007/s00419-018-1377-7

    Article  ADS  Google Scholar 

  30. A. V. Kravtsov, et al., “Finite element models in Lamb’s problem,” Mech. Solids 46, 952–959 (2011). https://doi.org/10.3103/S002565441106015X

    Article  ADS  Google Scholar 

  31. S. V. Kuznetsov and E. O. Terentjeva, “Planar internal Lamb problem: waves in the epicentral zone of a vertical power source,” Acoust. Phys. 61 (3), 356–367 (2015). https://doi.org/10.1134/S1063771015030112

    Article  ADS  Google Scholar 

  32. A. N. Norris, “Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelectric solids,” R. Soc. Lond. 447 (1929), 175–188 (1994). https://doi.org/10.1098/rspa.1994.0134

  33. A. Tverdokhlebov and J. Rose, “On Green’s functions for elastic waves in anisotropic media,” J. Acoust. Soc. Am. 83 (l), 118–121 (1988). https://doi.org/10.1121/1.396437

    Article  ADS  Google Scholar 

  34. J. C. F. Telles and C. A. Brebbia, “Boundary element solution for half-plane problems,” Int. J. Solids Struct. 17 (12), 1149–1158 (1981). https://doi.org/10.1016/0020-7683(81)90094-9

    Article  MATH  Google Scholar 

  35. C. C. Spyrakos and H. Ahtes, “Time domain boundary element method approaches in elastodynamics: a comparative study,” Comp. Struct. 24 (4), 529–535 (1986). https://doi.org/10.1016/0045-7949(86)90191-4

    Article  MATH  Google Scholar 

  36. K. M. Singh and M. Tanaka, “Elementary analytical integrals required in subtraction of singularity method for evaluation of weakly singular boundary integrals,” Eng. Anal. Bound. Elem. 31 (3), 241–247 (2007). https://doi.org/10.1016/j.enganabound.2006.05.003

    Article  MATH  Google Scholar 

  37. A. Saez and J. Dominguez, “Far field dynamic Green’s functions for BEM in transversely isotropic solids,” Wave Motion 32 (1), 113–123 (2000). https://doi.org/10.1016/S0165-2125(00)00032-9

    Article  ADS  MATH  Google Scholar 

  38. M. Koegl, “Free vibration analysis of anisotropic solids with the boundary element method,” Eng. Anal. Bound. Elem. 27 (2), 107–114 (2003). https://doi.org/10.1016/S0955-7997(02)00088-7

    Article  Google Scholar 

  39. A. Hayir and I. Bakirtas, “A note on a plate having a circular cavity excited by plane harmonic SH waves,” J. Sound Vibr. 271 (1-2), 241–255 (2004). https://doi.org/10.1016/S0022-460X(03)00751-X

    Article  ADS  Google Scholar 

  40. P. C. Dumir and A. K. Mehta, “Boundary element solution for elastic orthotropic half-plan problem,” Comp. Struct. 26 (3), 431–438 (1978). https://doi.org/10.1016/0045-7949(87)90043-5

    Article  MATH  Google Scholar 

  41. S. V. Kuznetsov, “Seismic waves and seismic barriers,” Acoust. Phys. 57 (3), 420–436 (2011). https://doi.org/10.1134/S1063771011030109

    Article  ADS  Google Scholar 

  42. I. Djeran-Maigre, et al., “Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates,” Acoust. Phys. 60, 200–207 (2014). https://doi.org/10.1134/S106377101402002X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ilyashenko.

Additional information

Translated by A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyashenko, A.V. Fundamental Solutions of the Equations of the Oscillation Theory for Anisotropic Elastic Media. Mech. Solids 58, 1551–1558 (2023). https://doi.org/10.3103/S002565442360006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442360006X

Keywords:

Navigation