Skip to main content
Log in

On Stress Relaxation in Bended Viscoelastic Plate with Tension–Compression Asymmetry

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This paper provides, a closed-form analytical solution to the plane-strain problem of stress relaxation in a bended plate with tension–compression asymmetry (TCA) in viscous properties. Reversible and irreversible strains are assumed to be finite. A linear viscous model with equivalent stress that is a piecewise linear function of the principal stresses with the TCA parameter is utilized. Features of the solution specific to this model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. A. Ambartsumyan and A. A. Khachatryan, “Basic equations of the elasticity theory for materials having different elastic moduli in tension and compression,” Inzh. Zh.: Mekh. Tverd. Tela, No. 2, 44–53 (1966).

  2. G. S. Shapiro, “On solids deformations with different elastic moduli in tension and compression,” Inzh. Zh.: Mekh. Tverd. Tela, No. 2, 123–125 (1966).

  3. S. A. Ambartsumyan and A. A. Khachatryan, “On bimodular elasticity theory,” Inzh. Zh.: Mekh. Tverd. Tela, No. 6, 64–67 (1966).

  4. V. P. Maslov and P. P. Mosolov, “General theory of the equations of motion of an elastic medium of different moduli,” J. Appl. Math. Mech. 49 (3), 322–336 (1985). https://doi.org/10.1016/0021-8928(85)90031-0

    Article  MathSciNet  Google Scholar 

  5. V. P. Myasnikov and A. I. Oleinikov, “Fundamental general relationships for a model of an isotropically elastic heteromodular medium,” Dokl. Akad. Nauk SSSR 322 (1), 44–53 (1992).

    Google Scholar 

  6. A. I. Oleinikov and E. V. Mogil’nikov, “Uniqueness and stability of the solutions for boundary value problems for bimodular nonlinear materials,” Dal’nevost. Mat. Zh. 3 (2), 242–253 (2002).

    Google Scholar 

  7. I. Yu. Tsvelodub, “Multimodulus elasticity theory,” J. Appl. Mech. Tech. Phys. 49, 129–135 (2008). https://doi.org/10.1007/s10808-008-0019-1

    Article  ADS  MathSciNet  Google Scholar 

  8. Z. Du, G. Zhang, T. Guo, Sh. Tang, and X. Guo, “Tension-compression asymmetry at finite strains: a theoretical model and exact solutions,” J. Mech. Phys. Solids 143, 104084 (2020). https://doi.org/10.1016/j.jmps.2020.104084

  9. O. Cazacu and F. Barlat, “A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals,” Int. J. Plasticity 20 (11), 2027–2045 (2004). https://doi.org/10.1016/j.ijplas.2003.11.021

    Article  Google Scholar 

  10. O. Cazacu, B. Plunkett, and F. Barlat, “Orthotropic yield criterion for hexagonal closed packed metals,” Int. J. Plasticity 22 (7), 1171–1194 (2006). https://doi.org/10.1016/j.ijplas.2005.06.001

    Article  Google Scholar 

  11. O. Cazacu and B. Revil-Baudard, “Tension-compression asymmetry effects on the plastic response in bending: new theoretical and numerical results,” Mech. Res. Commun. 114, 103596 (2021). https://doi.org/10.1016/j.mechrescom.2020.103596

  12. F. Pirnia, “Experimental analyses on XLPE under tension and compression,” Master’s Degree Thesis (Dep. of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, 2014).

  13. Y. Guo, G. Liu, and Y. Huang, “A complemented multiaxial creep constitutive Model for materials with different properties in tension and compression,” Eur. J. Mech. A/Solids 93, 104510 (2022). https://doi.org/10.1016/j.euromechsol.2022.104510

  14. A. Zolochevsky and G. Z. Voyiadjis, “Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression,” Int. J. Plasticity 21 (3), 435–462 (2005). https://doi.org/10.1016/j.ijplas.2003.12.007

    Article  Google Scholar 

  15. I. A. Banshchikova, “Construction of constitutive equations for orthotropic materials with different properties in tension and compression under creep conditions,” J. Appl. Mech. Tech. Phys. 61, 87–100 (2020). https://doi.org/10.1134/S0021894420010101

    Article  ADS  MathSciNet  Google Scholar 

  16. Kh. I. Al’tenbakh and A. A. Zolochevskii, “Energy version of creep and stress-rupture strength theory for anisotropic and isotropic materials which differ in resistance to tension and compression,” J. Appl. Mech. Tech. Phys. 33, 101–106 (1992). https://doi.org/10.1007/BF00864514

    Article  ADS  Google Scholar 

  17. B. V. Gorev, V. V. Rubanov, and O. V. Sosnin, “Construction of the creep equations for materials with different extension and compression properties,” J. Appl. Mech. Tech. Phys. 20 (4), 487–492 (1979). https://doi.org/10.1007/BF00905605

    Article  ADS  Google Scholar 

  18. L. Teixeira, J. Gillibert, T. Sayet, and E. Blond, “A creep model with different properties under tension and compression: applications to refractory materials,” Int. J. Mech. Sci. 212, 106810 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106810

  19. S. N. Korobeinikov, A. I. Oleinikov, B. V. Gorev, and K. S. Bormotin, “Mathematical simulation of creep processes in metal products made of materials with different properties under tension and compression,” Vychisl. Metody Program. 9, 346–365 (2008).

    Google Scholar 

  20. G. I. Bykovtsev and V. M. Yarushina, “Features of the unsteady creep model based on piecewise linear potentials application,” in Problems on Mechanics of Continuous Media and Structural Elements (to the 60th Anniversary of Professor G. I. Bykovtsev) (Dal’nauka, Vladivostok, 1998), pp. 9–26 [in Russian].

  21. A. A. Burenin and V. M. Yarushina, “The way to simulate deformation of materials with different properties against tension and compression,” in Problems on Mechanics of Deformable Solids and Rocks. Collection of Articles Dedicated to the 75th Anniversary of E. I. Shemyakin, Ed. by D. D. Ivlev and N. F. Morozov (Fizmatlit, Moscow, 2006), pp. 100–106 [in Russian].

    Google Scholar 

  22. V. M. Yarushina, “Simulation of the creep of materials with different strengths,” Dokl. Phys. 50 (7), 385–387 (2005).

    Article  ADS  Google Scholar 

  23. G. M. Sevast’yanov and K. S. Bormotin, “Stress relaxation in bended viscoelastic plate with tension-compression asymmetry,” Prikl. Mat. Tekh. Fiz., No. 4, 152–160 (2023).

  24. F. Sidoroff, “Un modele viscoelastique non lineaire avec configuration intermediate,” J. Mec. 13 (4), 679–713 (1974).

    MathSciNet  Google Scholar 

  25. D. D. Ivlev, “The theory of fracture of solids,” J. Appl. Math. Mech. 23 (3), 884–895 (1959). https://doi.org/10.1016/0021-8928(59)90185-6

    Article  MathSciNet  Google Scholar 

  26. R. Rivlin, “Large elastic deformations of isotropic materials – V: the problem of flexure,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 195, 463–473 (1949).

  27. M. Destrade, J. G. Murphy, and B. Rashid, “Differences in tension and compression in the nonlinearly elastic bending of beams,” Int. J. Struct. Changes Solids, Mech. Appl. 1 (1), 73–81 (2009).

    Google Scholar 

  28. M. Destrade, M. D. Gilchrist, J. A. Motherway, and J. G. Murphy, “Bimodular rubber buckles early in bending,” Mech. Mater. 42 (4), 469–476 (2010). https://doi.org/10.1016/j.mechmat.2009.11.018

    Article  Google Scholar 

  29. E. Ghobady, A. Shutov, and H. Steeb, “Parameter identification and validation of shape-memory polymers within the framework of finite strain viscoelasticity,” Materials (Basel) 14 (8), 2049 (2021). https://doi.org/10.3390/ma14082049

    Article  ADS  Google Scholar 

  30. G. M. Sevastyanov, “Creep relaxation in nonlinear viscoelastic twisted rods,” Z. Angew. Math. Mech. 102 (10), e202100552 (2022). https://doi.org/10.1002/zamm.202100552

Download references

Funding

The reported study was carried out within the framework of the state assignment of the KhFRC FEB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Sevastyanov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevastyanov, G.M. On Stress Relaxation in Bended Viscoelastic Plate with Tension–Compression Asymmetry. Mech. Solids 58, 2920–2932 (2023). https://doi.org/10.3103/S0025654423080186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423080186

Keywords:

Navigation