Skip to main content
Log in

Motion of a Variable Body with a Fixed Point in a Time-Dependent Force Field

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The problem of motion around a fixed point of a variable body in a time-dependent force field is considered. The conditions under which the equations of motion are reduced to the classical Euler–Poisson equations describing the motions of a rigid body in the field of attraction are indicated. The problems of the existence of the first integrals and the stability of steady motions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics. Hamiltonian Methods, Integrability, Chaos (Inst. of Computer Science, Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. A. Burov and D. P. Chevallier, “On motion of a rigid body about a fixed point with respect to a rotating frame,” Regular Chaotic Dyn. 3 (1), 66–76 (1998). doi RD1998v003n01ABEH000061

  3. T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale, Vol. 2, Part 2: Dinamica dei sistemi con un numero finito di gradi di bibertà (N. Zanichelli, Bologna, 1950).

  4. J. Wittenburg, Dynamics of Systems of Rigid Bodies (Teubner, Stuttgart, 1977).

    Book  Google Scholar 

  5. G. V. Gorr, A. V. Maznev, and G. A. Kotov, Motion of a Gyrostat with a Variable Gyrostatic Moment (Institute for Applied Mathematics and Mechanics, Donetsk, 2017) [in Russian].

    Google Scholar 

  6. V. V. Golubev, Lectures on the Integration of the Equations of Motion of a Rigid Body round a Fixed Point (Gostekhizdat, Moscow, 1953) [in Russian].

    Google Scholar 

  7. I. N. Gashenenko, G. V. Gorr, and A. M. Kovalev, Classical Problems of Rigid Body Dynamics (Naukova Dumka, Kiev, 2012) [in Russian].

    Google Scholar 

  8. H. M. Yehia, Rigid Body Dynamics. A Lagrangian Approach (Springer Nature, Switzerland AG, 2022).

    Book  Google Scholar 

  9. V. V. Kozlov, “Splitting of the separatrices in the perturbed Euler-Poinsot problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh. 31 (6), 99–104 (1976).

    Google Scholar 

  10. S. L. Ziglin, “Splitting of separatrices, branching, solutions and non-existence of an integral in the dynamics of a rigid body,” Tr. Mosk. Mat. O-va. 41, 287–303 (1980).

    MathSciNet  Google Scholar 

  11. V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics,” Russ. Math. Surv. 38 (1), 1–76 (1983). https://doi.org/10.1070/RM1983v038n01ABEH003330

    Article  Google Scholar 

  12. H. M. Yehia, “New integrable cases in dynamics of rigid bodies,” Mech. Res. Commun. 13 (3), 169–172 (1986).

    Article  MathSciNet  Google Scholar 

  13. H. M. Yehia, “New integrable cases in the problem of motion of a gyrostat,” Moscow Univ. Bull. Ser. I: Math., Mech. 42 (4), 29–31 (1987).

    Google Scholar 

  14. L. N. Sretensky, “On some cases of integrability of the gyrostat motion equations,” Dokl. Akad. Nauk SSSR 149 (2), 292–294 (1963).

    Google Scholar 

  15. L. N. Sretensky, “On some cases of motion for a heavy rigid body with a gyroscope,” Vestn. Mosk. Univ., No. 3, 60–71 (1963).

  16. L. Gavrilov, “Non-integrability of the equations of heavy gyrostat,” Compos. Math. 82 (3), 275–291 (1992).

    MathSciNet  Google Scholar 

  17. S. B. Katok, “Bifurcation sets and integral manifolds in the problem of a heavy rigid body motion,” Usp. Mat. Nauk 27 (2), 126–132 (1972).

    Google Scholar 

  18. V. N. Rubanovskii, “On bifurcation and stability of permanent rotations of a heavy rigid body with one fixed point,” Theor. Prilozh. Mekh., Sofiya 5 (4), 55–70 (1974).

    Google Scholar 

  19. V. N. Rubanovskii, “On bifurcation and stability of stationary motions in certain problems of dynamics of a solid body,” J. Appl. Math. Mech. 38 (4), 573–584 (1974).

    Article  MathSciNet  Google Scholar 

  20. Ya. V. Tatarinov, “Portraits of classical integrals of the problem on a rigid body Rotation around a fixed point,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 99–105 (1974).

  21. I. N. Gashenenko and P. H. Richter, “Enveloping surfaces and admissible velocities of heavy rigid bodies,” Int. J. Bifurcation Chaos 14 (8), 2525–2553 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. V. Karapetyan, “Invariant sets in the Goryachev–Chaplygin problem: existence, stability and branching,” J. Appl. Math. Mech. 70 (2), 195–198 (2006).

    Article  MathSciNet  Google Scholar 

  23. A. Anchev, “Permanent rotations of a heavy gyrostat having a stationary point,” J. Appl. Math. Mech. 31 (1), 48–58 (1967).

    Article  Google Scholar 

  24. A. Elipe, M. Arribas, and A. Riaguas, “Complete analysis of bifurcations in the axial gyrostat problem,” J. Phys. A: Math. Gen. 30, 587–601 (1997). https://doi.org/10.1088/0305-4470/30/2/021

    Article  ADS  MathSciNet  Google Scholar 

  25. I. N. Gashenenko, “Bifurcations of the integral manifolds in the problem on heavy gyrostat motion,” Nelin. Din. 1 (1), 33–52 (2005). https://doi.org/10.20537/nd0501003

    Article  Google Scholar 

  26. M. Iñarrea, V. Lanchares, A. I. Pascual, and A. Elipe, “On the stability of a class of permanent rotations of a heavy asymmetric gyrostat,” Regular Chaotic Dyn. 22, 824–839 (2017). https://doi.org/10.1134/S156035471707005X

    Article  ADS  MathSciNet  Google Scholar 

  27. O. V. Kholostova, Dynamical Problems on Rigid Bodies with a Vibrating Suspension (Institute Computer Sci., Izhevsk, 2016) [in Russian].

    Google Scholar 

  28. O. I. Bogoyavlensky, “New integrable problem of classical mechanics,” Commun. Math. Phys. 94, 255–269 (1984). https://doi.org/10.1007/BF01209304

    Article  ADS  MathSciNet  Google Scholar 

  29. F. Brun, “Rotation kring fix punkt,” Ofversigt Kongl. Sven. Vetensk. Akad. Forhadl. Stokholm 7, 455–468 (1893).

    Google Scholar 

  30. F. Brun, “Rotation kring fix punkt. II,” Ark. Mat. Ast. Fys. 4 (4), 1–4 (1907).

    Google Scholar 

  31. F. Brun, “Rotation kring fix punkt. III,” Ark. Mat. Ast. Fys. 6 (5), 1–10 (1910).

    Google Scholar 

  32. A. V. Karapetyan, “Invariant sets in the Clebsch–Tisserand problem: existence and stability,” J. Appl. Math. Mech. 70 (6), 859–864 (2006).

    Article  MathSciNet  Google Scholar 

  33. D. N. Seiliger, Motion Theory for a Similarly Variable Body (Tipografiya Kazanskogo Imperatorskogo Univ., 1892) [in Russian].

    Google Scholar 

  34. N. G. Chetaev, “Motion equations for a similarly variable body,” Uch. Zap. Kazan. Univ. 114, 5–7 (1954).

    Google Scholar 

  35. N. G. Chetaev, Theoretical Mechanics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  36. J. J. Sławianowski, “The mechanics of the homogeneously-deformable body. Dynamical models with high symmetries,” Z. Angew. Math. Mech. 62 (6), 229–240 (1982). https://doi.org/10.1002/zamm.19820620604

    Article  Google Scholar 

  37. J. J. Sławianowski, “Affinely rigid body and Hamiltonian systems on GL (n R),” Rep. Math. Phys. 26 (2), 73–119 (1988). https://doi.org/10.1016/0034-4877(88)90006-7

    Article  ADS  MathSciNet  Google Scholar 

  38. J. J. Sławianowski, V. Kovalchuk, B. Gołubowska, A. Martens, and E. E. Rożko, “Mechanics of affine bodies. Towards affine dynamical symmetry,” J. Math. Anal. Appl. 446 (1), 493–520 (2017). https://doi.org/10.1016/j.jmaa.2016.08.042

    Article  MathSciNet  Google Scholar 

  39. A. A. Burov and D. P. Chevallier, “Dynamics of affinely deformable bodies from the standpoint of theoretical mechanics and differential geometry,” Rep. Math. Phys. 62 (3), 283–321 (2008). https://doi.org/10.1016/S0034-4877(09)00003-2

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Iñarrea and V. Lanchares, “Chaos in the reorientation process of a dual-spin spacecraft with time-dependent moments of inertia,” Int. J. Bifurcation Chaos 10 (05), 997–1018 (2000). https://doi.org/10.1142/S0218127400000712

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Iñarrea, V. Lanchares, V. M. Rothos, and J. P. Salas, “Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag,” Int. J. Bifurcation Chaos 13 (02), 393–409 (2003). https://doi.org/10.1142/S0218127403006613

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Burov, A. Guerman, and I. Kosenko, “Satellite with periodical mass redistribution: relative equilibria and their stability,” Celest. Mech. Dyn. Astron. 131, 1 (2019). https://doi.org/10.1007/s10569-018-9874-0

    Article  ADS  MathSciNet  Google Scholar 

  43. E. I. Druzhinin, “The permanent rotations of a balanced non-autonomous gyrostat,” J. Appl. Math. Mech. 63 (5), 825–826 (1999).

    Article  MathSciNet  Google Scholar 

  44. O. S. Volkova and I. N. Gashenenko, “Pendulum rotations of a heavy gyrostat with variable gyrostatic moment,” in Mechanics of the Solid Body. Interuniversity Collection of Scientific Papers (2009), Issue 39, pp. 42–49 [in Russian].

  45. A. V. Maznev, “Precessional movements of a gyrostat with a variable gyrostatic moment under the influence of potential and gyroscopic forces,” in Mechanics of the Solid Body. Interuniversity Collection of Scientific Papers (2010), Issue 40, pp. 91–104 [in Russian].

  46. A. V. Maznev, “Regular precession of a gyrostat with a variable gyrostatic moment under the influence of potential and gyroscopic forces,” Dokl. Nats. Akad. Nauk Ukr., No. 8, 66–72 (2011).

  47. G. V. Gorr and A. V. Maznev, “About motion of symmetric gyrostat with a variable gyrostatic moment in two tasks of dynamics,” Nelin. Din. 8 (2), 369–376 (2012). https://doi.org/10.20537/nd1202011

    Article  Google Scholar 

  48. G. V. Gorr and A. V. Maznev, “On two linear invariant relations for the equations of motion of a gyrostat in the case of a variable gyrostatic moment,” Dyn. Syst. 2(30) (1, 2), 23–32 (2012).

  49. G. V. Gorr, “On one approach to studying the motion of a gyrostat with a variable gyrostatic moment,” Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki 31 (1), 102–115 (2021).

    Article  Google Scholar 

  50. G. V. Gorr and T. V. Belokon, “On solutions of the equations of motion of a gyrostat with a variable gyrostatic moment,” Mech. Solids 56 (7), 1157–1166 (2021). https://doi.org/10.3103/S002565442107013X

    Article  ADS  Google Scholar 

  51. D. N. Tkachenko, “New solution to the equations of motion of a gyrostat with a variable gyrostatic moment under the action of potential and gyroscopic forces,” Mekh. Tverd. Tela, No. 51, 34–43 (2021).

  52. D. A. Danilyuk, “On one solution of the Kirchhoff–Poisson equations in the problem of the motion of a gyrostat with a variable gyrostatic moment,” Mekh. Tverd. Tela, No. 51, 44–56 (2021).

  53. D. A. Danilyuk and D. N. Tkachenko, “New solution to the equations of motion of a gyrostat with variable gyrostatic under the action of potential and gyroscopic forces,” Zh. Teor. Prikl. Mekh., No. 1 (78), 5–15 (2022). https://doi.org/10.24412/0136-4545-2022-1-5-15

  54. G. W. Gorr, “On a class of semi-regular gyrostat precessions with variable gyrostatic moment,” Mech. Solids 58 (2), 475–482 (2023). https://doi.org/10.3103/S0025654422600957

    Article  ADS  Google Scholar 

  55. L. Cveticanin, Dynamics of Machines with Variable Mass (Stability and Control: Theory, Methods and Applications) (Routledge, 1998). https://doi.org/10.1201/9780203759066

    Book  Google Scholar 

  56. J. J. Ong and O. M. O’Reilly, “On the equations of motion for rigid bodies with surface growth,” Int. J. Eng. Sci. 42 (19-20), 2159–2174 (2004). https://doi.org/10.1016/j.ijengsci.2004.07.010

    Article  MathSciNet  Google Scholar 

  57. H. Irschik and A. Humer, “A rational treatment of the relations of balance for mechanical systems with a time-variable mass and other non-classical supplies,” in Dynamics of Mechanical Systems with Variable Mass (Springer, Vienna, 2014), Vol. 557, pp. 1–50.

    Book  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Burov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burov, A.A. Motion of a Variable Body with a Fixed Point in a Time-Dependent Force Field. Mech. Solids 58, 2750–2756 (2023). https://doi.org/10.3103/S002565442308006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442308006X

Keywords:

Navigation