Skip to main content
Log in

The Problem Solution on the Propagation of a Griffith Crack Based on the Equations of a Nonlinear Model

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

On the basis of a nonlinear model of deformation of a crystalline medium with a complex lattice, the problem of the stationary propagation of a Griffith crack under the action of homogeneous expanding stresses is posed and solved. It is shown that the stressed and deformed states of the medium are determined both by external influences on the medium and by the gradients of the optical mode (mutual displacement of atoms). The contributions from these factors are separated. Finding the components of the stress tensor and macro-displacement vector is reduced to solving Riemann–Hilbert boundary value problems. Their exact analytical solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. L. Aero, “Microscale deformations in a two-dimensional lattice: Structural transitions and bifurcations at critical shear,” Phys. Solid State 42, 1147–1153 (2000). https://doi.org/10.1134/1.1131331

    Article  ADS  Google Scholar 

  2. E. L. Aero, “Micromechanics of a double continuum in a model of a medium with variable periodic structure,” J. Eng. Math. 55, 81–95 (2006). https://doi.org/10.1007/s10665-005-9012-3

    Article  MathSciNet  MATH  Google Scholar 

  3. A. N. Bulygin and Y. V. Pavlov, “Solution of dynamic equations of plane deformation for nonlinear model of complex crystal lattice,” in Advanced Structured Materials, Vol. 164: Mechanics and Control of Solids and Structures (Springer, Cham, 2022), pp. 115–136. https://doi.org/10.1007/978-3-030-93076-9_6

  4. Fracture an Advanced Treatise, Ed. by H. Liebowitz, Vol. II: Mathematical Fundamentals (Academic Press, New York, 1968).

  5. J. F. Knott, Fundamentals of Fracture Mechanics (Butterworths, London, 1973).

    Google Scholar 

  6. D. Broek, Elementary Engineering Fracture Mechanics (Martinus Nijhoff Publishers, Dordrecht, 1984).

    MATH  Google Scholar 

  7. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, “Nonlinear deformation model of crystal media allowing martensite transformations: solution of static equations,” Mech. Solids 53, 623–632 (2018). https://doi.org/10.3103/S0025654418060043

    Article  ADS  Google Scholar 

  8. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, “Nonlinear model of deformation of crystalline media allowing for martensitic transformations: plane deformation,” Mech. Solids 54, 797–806 (2019). https://doi.org/10.3103/S0025654419050029

    Article  ADS  MATH  Google Scholar 

  9. J. Frenkel and T. Kontorova, “On the theory of plastic deformation and twinning,” Acad. Sci. USSR J. Phys. 1, 137–149 (1939).

    MathSciNet  MATH  Google Scholar 

  10. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model. Concepts, Methods, and Applications (Springer, Berlin, 2004).

    Book  MATH  Google Scholar 

  11. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1910).

    MATH  Google Scholar 

  12. G. Leibfried, Gittertheorie der Mechanischen und Thermissechen Eigenschaften der Kristalle. Handbuch Der Physik, Band 7, Teil 2 (Springer-Verlag, Berlin, 1955).

  13. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956).

    MATH  Google Scholar 

  14. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending (Nauka, Moscow, 1966; Springer, 1977).

  15. M. V. Keldysh and L. I. Sedov, “Effective solution of some boundary-value problems for harmonic functions,” Dokl. Akad. Nauk SSSR 16 (1), 7–10 (1937).

    MATH  Google Scholar 

  16. E. H. Yoffe, “The moving Griffith crack,” Phil. Mag. Ser. 7 42 (330), 739–750 (1951). https://doi.org/10.1080/14786445108561302

    Article  MathSciNet  MATH  Google Scholar 

  17. C. E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. Instn. Nav. Archit. Lond. 55, 219–230 (1913).

    Google Scholar 

  18. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, “Solutions of the sine-Gordon equation with a variable amplitude,” Theor. Math. Phys. 184, 961–972 (2015). https://doi.org/10.1007/s11232-015-0309-8

    Article  MathSciNet  MATH  Google Scholar 

  19. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, “Exact analytical solutions for nonautonomic nonlinear Klein-Fock-Gordon equation,” in Advanced Structured Materials, Vol. 87: Advances in Mechanics of Microstructured Media and Structures (Springer, Cham, 2018), pp. 21–33. https://doi.org/10.1007/978-3-319-73694-5_2

  20. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, “Some solutions of dynamic and static nonlinear nonautonomous Klein-Fock-Gordon equation,” in Advanced Structured Materials, Vol. 122: Nonlinear Wave Dynamics of Materials and Structures (Springer, Cham, 2020), pp. 107–120. https://doi.org/10.1007/978-3-030-38708-2_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Pavlov.

Additional information

Translated by A.Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulygin, A.N., Pavlov, Y.V. The Problem Solution on the Propagation of a Griffith Crack Based on the Equations of a Nonlinear Model. Mech. Solids 58, 1437–1446 (2023). https://doi.org/10.3103/S0025654422601483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422601483

Keywords:

Navigation