Skip to main content
Log in

Underwater Explosion (UNDEX) Phenomenon and Response of Marine Combatants to UNDEX Loading

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This paper reviews prominent published works on UNDEX phenomenon and associated load characterization on structures subjected to UNDEX. An overview of characteristic events associated with UNDEX phenomenon resulting in a transient dynamic loading on the structure has been presented. A load characterization methodology for far-field UNDEX, based on empirical calculation of incident pressure load time history on the structure due to an explosive charge of known weight and standoff distance. The presented UNDEX load characterization includes the effect of FSI based on Taylor’s theory for the estimation of the modified transient pressure filed. Salient features in numerical modelling and simulations of non-linear structural responses and dynamic effects due to UNDEX have been highlighted. Significance of zoning from design against shock for shipboard equipment and scope of FEA numerical simulations using a high performance computing (HPC) setup for validation of loads corresponding to a given shock grade/standard, and its importance in optimizing platform designs against shock hardening requirements, have also been discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. H. Cole, Underwater Explosion (Princeton Univ. Press, New Jersey, 1948).

    Book  Google Scholar 

  2. A. H. Keil, The Response of Ships to Underwater Explosion, David Taylor Model Basin Report No. 1576 (Defense Technical Information Center, 1961).

  3. W. Reid, The Response of Surface Ships to Underwater Explosion (DSTO Aeronautical and Martime Research Laboraory, Melbourne, Australia, 1996).

    Google Scholar 

  4. H. Ucar, Dynamic Response of Catamaran Hull Ship Subjected to Underwater Explosions (Naval Postgraduate School, Monterey, CA, 2006).

    Google Scholar 

  5. F. A. Costanzo, “Underwater explosion phenomena and shock physics,” in Structural Dynamics, Ed. by T. Proulx, Vol. 3: Conference Proceedings of the Society for Experimental Mechanics Series (Springer, New York, 2010). https://doi.org/10.1007/978-1-4419-9834-7_82

  6. G. I. Taylor, “The distortion under pressure of a diaphragm which is clamped along its edge and stressed beyond its elastic limit,” in Underwater Explosion Research, Vol. 3: The Damage Process (Office of Naval Research, Washington, D.C., 1950), pp. 107–121.

  7. T. L. Geers, “Doubly asymptotic approximation for transient motions of submerged structures,” J. Acoust. Soc. Am. 64 (5), 1500–1508 (1978). https://doi.org/10.1121/1.382093

    Article  ADS  MATH  Google Scholar 

  8. T. L. Geers and C. A. Felippa, “Doubly asymptotic approximation for vibration of submerged structures,” J. Acoust. Soc. Am. 73 (4), 1152–1159 (1983). https://doi.org/10.1121/1.389286

    Article  ADS  Google Scholar 

  9. C. A. Felippa and J. A. Deruntz, “Finite element analysis of shock-induced hull cavitation,” Comput. Meth. Appl. Mech. Eng. 44 (3), 297–337 (1984). https://doi.org/10.1016/0045-7825(84)90134-8

    Article  ADS  MATH  Google Scholar 

  10. M. A. Sprague and T. L. Geers, “Spectral elements and field separation for an acoustic fluid subject to cavitation,” J. Computat. Phys. 184 (1), 149–162 (2003). https://doi.org/10.1016/S0021-9991(02)00024-4

    Article  ADS  MATH  Google Scholar 

  11. M. A. Sprague and T. L. Geers, “A spectral-element method for modelling cavitation in transient fluid-structure interaction,” Int. J. Num. Meth. Eng. 60 (15), 2467–2499 (2004). https://doi.org/10.1002/nme.1054

    Article  MATH  Google Scholar 

  12. A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Computat. Phys. 54 (3), 468–488 (1984). https://doi.org/10.1016/0021-9991(84)90128-1

    Article  ADS  MATH  Google Scholar 

  13. G. I. Taylor, “The pressure and impulse of submarine explosion waves on plates,” in The Scientific Papers of Sir George Ingram Taylor, Vol. 3: Aerodynamics and the Mechanics of Projectiles and Explosions (Cambridge Univ. Press, Cambridge, 1963), pp. 287–303.

  14. E. N. Fox, “A review of underwater explosion phenomenon,” Compend. Underwater Explosion Res. ONR 1, 1-83 (1947).

    Google Scholar 

  15. F. W. Travis and W. Johnson, “Experiments in the dynamic deformation of clamped circular sheets of various metals subject to an underwater explosive charge,” Sheet Metal lndust. 39, 456–474 (1962).

  16. T.M. Finnie, “Explosive forming of circular diaphragms,” Sheet Metal Indust. 39, 391–398 (1962).

    Google Scholar 

  17. T. Williams, “Some metallurgical aspects of metal forming,” Sheet Metal Indust. 39, 487–494 (1962).

    Google Scholar 

  18. W. Johnson, K. Kormi, and F. W. Travis, “The explosive drawing of square and flat-bottomed circular cups and bubble pulsation phenomena,” in Proc. of 5th Int. M.T.D.R. Conference, Birmingham, 1964 (Pergamon Press, Oxford, 1965), pp. 293–328.

  19. W. Johnson, A. Poynton, H. Singh, and F.W. Travis, “Experiments in the underwater explosive stretch forming of clamped circular blanks,” Int. J. Mech. Sci. 8, 237–270 (1966).

    Article  Google Scholar 

  20. D. E. Boyd, “Dynamic deformation of circular membranes,” J. Eng. Mech. ASCE 92, 1– 16 (1966).

    Google Scholar 

  21. T. Bednarski, “The dynamic deformation of a circular membrane,” Int. J. Mech. Sci. 11 (12), 949–959 (1969). https://doi.org/10.1016/0020-7403(69)90007-1

    Article  Google Scholar 

  22. M. R. Driels, “The effect of a non-zero cavitation tension on the damage sustained by a target plate subject to an underwater explosion,” J. Sound Vibr. 73 (4), 533–545 (1980).

    Article  ADS  Google Scholar 

  23. J. Jiang and M. D. Olson, “Rigid-plastic analysis of underwater loaded stiffened plates,” Int. J. Mech. Sci. 37 (8), 843–859 (1995). https://doi.org/10.1016/0020-7403(94)00100-X

    Article  MATH  Google Scholar 

  24. J. Jiang and M. D. Olson, “Non-linear transient analysis of submerged circular plates subjected to underwater explosions,” Comput. Methods Appl. Mech. Eng. 134 (1–2), 163–179 (1996). https://doi.org/10.1016/0045-7825(96)01031-6

  25. Y. S. Shin and L. D. Santiago, “Surface ship shock modeling and simulation: two-dimensional analysis,” Shock Vibr. 5, 29–137 (1998).

    Google Scholar 

  26. Y. S. Shin, “Ship shock modeling and simulation for far-field underwater explosion,” Comput. Struct. 82 (23–26), 2211–2219 (2004). https://doi.org/10.1016/j.compstruc.2004.03.075

  27. L. Hammond and R. Grzebieta, “Structural response of submerged air-backed plates by experimental and numerical analyses,” Shock Vibr. 7, 333–341 (2000).

    Article  Google Scholar 

  28. J. M. Brett, G. Yiannakopolous, and P. J. Van der Schaaf, “Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion,” Int. J. Impact Eng. 24 (9), 875–890 (2000).https://doi.org/10.1016/S0734-743X(00)00023-3

    Article  Google Scholar 

  29. J. M. Brett and G. Yiannakopolous, “A study of explosive effects in close proximity to a submerged cylinder,” Int. J. Impact Eng. 35 (4), 206–225 (2008). https://doi.org/10.1016/j.ijimpeng.2007.01.007

    Article  Google Scholar 

  30. R. Rajendran and K. Narasimhan, “Performance evaluation of HSLA steel subjected to Underwater Explosion,” J. Mater. Eng. Perform. 10 (1), 66–74 (2001). https://doi.org/10.1361/105994901770345376

    Article  Google Scholar 

  31. R. Rajendran and K. Narasimhan, “Linear elastic shock response of plates subjected to underwater explosion,” Int. J. Impact Eng. 25 (5), 493–506 (2001). https://doi.org/10.1016/S0734-743X(00)00056-7

    Article  Google Scholar 

  32. K. Ramajeyathilagam, C.P. Vendhan, and V. Bhujanga Rao, “Non-linear transient dynamic response of rectangular plates under shock loading”, Int. J. Impact Eng. 24 (10), 999-1015 (2000). https://doi.org/10.1016/S0734-743X(00)00018-X

    Article  Google Scholar 

  33. K. Ramajeyathilagam and C.P. Vendhan, “Underwater explosion damage of ship hull panels,” Defence Sci. J. 53 (4), 393–402 (2003). https://doi.org/10.14429/DSJ.53.2285

    Article  Google Scholar 

  34. K. Ramajeyathilagam and C.P. Vendhan, “Deformation and rupture of thin rectangular plates subjected to underwater shock,” Int. J. Impact Eng. 30, 699–719 (2004). https://doi.org/10.1016/j.ijimpeng.2003.01.001

    Article  Google Scholar 

  35. N. K. Gupta, P. Kumar, and S. Hegde, “On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion - a numerical study,” Int. J. Mech. Sci. 52 (2), 733–744 (2010). https://doi.org/10.1016/j.ijmecsci.2010.01.005

    Article  Google Scholar 

  36. C. Y. Jen and Y. S Tai, “Deformation behavior of a stiffened panel subjected to underwater shock loading using the nonlinear finite element method,” Mater. Des. 31 (1), 325–335 (2010). https://doi.org/10.1016/j.matdes.2009.06.011

    Article  Google Scholar 

  37. J. Qiankun and D. Gangyi, “A finite element analysis of ship sections subjected to underwater explosion,” Int. J. Impact Eng. 38 (7), 558–566 (2011). https://doi.org/10.1016/j.ijimpeng.2010.11.005

    Article  Google Scholar 

  38. P. Ren and W. Zhang, “Underwater Shock response of air-backed thin aluminum alloy plates: An experimental and numerical study,” J. Phys.: Conf. Ser. 500, 182034 (2014). https://doi.org/10.1088/1742-6596/500/18/182034

  39. F. Elsayed, Q. Hui, T. Lili, and M. Helal, “Numerical simulation and response of stiffened plates subjected to noncontact underwater explosion,” Adv. Mater. Sci. Eng. 2014, 752586 (2014). https://doi.org/10.1155/2014/752586

  40. N. Zhang, Z. Zong, and W. Zhang, “Dynamic response of a surface ship structure subjected to an underwater explosion bubble,” Marine Struct. 35, 26–44 (2014). https://doi.org/10.1016/j.marstruc.2013.11.001

    Article  Google Scholar 

  41. Z. Lu and A. Brown, “Application of the spectral element method in a surface ship far-field UNDEX problem,” Shock Vibr. 2019, 7463134 (2019). https://doi.org/10.1155/2019/7463134

  42. C. Javier, M. Galuska, M. Papa, et al., “Underwater explosive bubble interaction with an adjacent submerged structure,” J. Fluids Struct. 100, 103189 (2021).https://doi.org/10.1016/j.jfluidstructs.2020.103189

  43. H. A. Boon and J. H. Mingguang, “Managing shock requirements of shipboard equipment,” DSTA Horizons 14, 30–37 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagesh or N. K. Gupta.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagesh, Gupta, N.K. Underwater Explosion (UNDEX) Phenomenon and Response of Marine Combatants to UNDEX Loading. Mech. Solids 58, 338–351 (2023). https://doi.org/10.3103/S0025654422601318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422601318

Keywords:

Navigation