Skip to main content
Log in

Stationary Motions of a Close to Regular Isosceles Tetrahedron with a Fixed Point in the Central Newtonian Force Field

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The existence, stability, and branching of stationary motions of a tetrahedral body around a fixed point in the central Newtonian force field are studied. The case of an isosceles tetrahedron close to regular is considered. The connection of these properties of stationary motions with the properties of stationary motions of a regular tetrahedron is investigated. In celestial mechanics, the gravitational field of an irregularly shaped celestial body is often modeled by the gravitational field of some set of massive points. Representations in the form of a set of two or three point masses contain symmetries that are not inherent in real bodies. Approximations of gravitational fields with the help of fields of attraction of exactly four massive points seem to be the most suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. S. Sulikashvili, “Stationary motions of tetrahedron and octahedron in the central gravitational field,” in Problems of Stability and Motion Stabilization (Vych. Zentr AN SSSR, Moscow, 1987), pp. 57–66.

    MATH  Google Scholar 

  2. R. S. Sulikashvili, “On the stationary motions in a Newtonian field of force of a body that admits of regular polyhedron symmetry groups,” J. Appl. Math. Mech. 53 (4), 452–456 (1989). https://doi.org/10.1016/0021-8928(89)90051-8

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Burov and R. S. Sulikashvili, “On the motion of a rigid body possessing a _nite group of symmetry,” Prépublication du C.E.R.M.A. Ecole Nationale des Ponts et Chaussées, No. 17 (1993).

  4. A. A. Burov and E. A. Nikonova, “Rotation of isosceles tetrahedron in central newtonian force field: staude cone,” Moscow Univ. Mech. Bull. 76, 123–129 (2021). https://doi.org/10.3103/S0027133021050034

    Article  MATH  Google Scholar 

  5. A. A. Burov and E. A. Nikonova, “Steady motions of a symmetric isosceles tetrahedron in a central force field,” Mech. Solids 56, 737–747 (2021). https://doi.org/10.3103/S0025654421050071

    Article  ADS  Google Scholar 

  6. E. A. Nikonova, “On stationary motions of an isosceles tetrahedron with a fixed point in the central field of forces,” Prikl. Mat. Mekh. 86 (2), 153–168 (2022). https://doi.org/10.31857/S0032823522020096

    Article  Google Scholar 

  7. A. V. Karapetyan and I. I. Naralenkova, ‘‘The bifurcation of the equilibria of mechanical systems with symmetrical potential,’’ J. Appl. Math. Mech. 62, 9–17 (1998). https://doi.org/10.1016/S0021-8928(98)00021-5

    Article  MathSciNet  Google Scholar 

  8. I. I. Naralenkova, ‘‘On the branching and stability of equilibrium positions of a rigid body in the Newtonian field,’’ in Problems of Stability and Motion Stabilization (Vych. Tsentr Ross. Akad. Nauk, Moscow, 1995), pp. 53–60.

    Google Scholar 

  9. Ye. V. Abrarova and A. V. Karapetyan, “Steady motions of a rigid body in a central gravitational field,” J. Appl. Math. Mech. 58 (5), 825–830 (1994). https://doi.org/10.1016/0021-8928(94)90007-8

    Article  MathSciNet  Google Scholar 

  10. Ye.V. Abrarova, “The stability of the steady motions of a rigid body in a central field,” J. Appl. Math. Mech. 59 (6), 903–910 (1995). https://doi.org/10.1016/0021-8928(95)00123-9

    Article  MathSciNet  MATH  Google Scholar 

  11. A. A. Burov and A. V. Karapetyan, “On the motion of cross-shaped bodies,” Mech. Solids 30 (6), 11–15 (1995).

    Google Scholar 

  12. Ye. V. Abrarova, “On the relative equilibria of a solid in a central gravitational field,” Problems of Stability and Motion Stabilization (Vych. Tsentr Ross. Akad. Nauk, Moscow, 1995), pp. 3–28.

    MATH  Google Scholar 

  13. Ye. V. Abrarova and A. V. Karapetyan, “Bifurcation and stability of the steady motions and relative equilibria of a rigid body in a central gravitational field,” J. Appl. Math. Mech. 60 (3), 369–380 (1996). https://doi.org/10.1016/S0021-8928(96)00047-0

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Burov, A. D. Guerman, and R. S. Sulikashvili, “The orbital motion of a tetrahedral gyrostat,” J. Appl. Math. Mech. 74 (4), 425–435 (2010). https://doi.org/10.1016/j.jappmathmech.2010.09.008

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Burov, A. D. Guerman, and R. S. Sulikashvili, “The steady motions of gyrostats with equal moments of inertia in a central force field,” J. Appl. Math. Mech. 75 (5), 517–521 (2011). https://doi.org/10.1016/j.jappmathmech.2011.11.005

    Article  MathSciNet  MATH  Google Scholar 

  16. A. A. Burov, A. D. Guerman, and R. S. Sulikashvili, “Dynamics of a tetrahedral satellite-gyrostat,” AIP Conf. Proc. 1281, 465–468 (2010). https://doi.org/10.1063/1.3498509

    Article  MATH  ADS  Google Scholar 

  17. A. A. Burov, A. D. Guerman, E. A. Nikonova, V. I. Nikonov, “Approximation for attraction field of irregular celestial bodies using four massive points,” Acta Astronaut. 157, 225–232 (2019). https://doi.org/10.1016/j.actaastro.2018.11.030

    Article  ADS  Google Scholar 

  18. H. Yang, Sh. Li, and J. Sun, “A fast Chebyshev polynomial method for calculating asteroid gravitational fields using space partitioning and cosine sampling,” Adv. Space Res. 65 (4), 1105–1124 (2020). https://doi.org/10.1016/j.asr.2019.11.001

    Article  ADS  Google Scholar 

  19. V. N. Rubanovsky and V. A. Samsonov, Stability of Stationary Motions in Examples and Problems (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  20. E. J. Routh, Treatise on the Stability of a Given State of Motion (Cambridge Uni. press, Cambridge, 1877).

  21. E. J. Routh, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Rodies (MacMillan, London, 1884).

    Google Scholar 

  22. A. V. Karapetyan, Stability of Stationary Movements (Editorial URSS, Moscow, 1998) [in Russian].

    Google Scholar 

  23. I. F. Sharygin, Problems in Geometry. Stereometry (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  24. M. A. Vashkoviak, “On the stability of circular “asteroid” orbits in an N-planetary system,” Celest. Mech. 13 (3), 313–324 (1976).

    Article  ADS  Google Scholar 

  25. A. A. Burov and V. I. Nikonov, “Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point,” Rus. J. Nonlin. Dyn. 12 (2), 179–196 (2016). https://doi.org/10.20537/nd1602002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikonova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonova, E.A. Stationary Motions of a Close to Regular Isosceles Tetrahedron with a Fixed Point in the Central Newtonian Force Field. Mech. Solids 57, 1059–1067 (2022). https://doi.org/10.3103/S0025654422050211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422050211

Keywords:

Navigation