The equation (2.1) should read as \(\nabla \times {\mathbf{h}} = {\mathbf{J}} + {{{{\varepsilon }}}_{0}}\frac{{\partial {\mathbf{E}}}}{{\partial t}}\).

The equation (2.2) should read as \(\nabla \times {\mathbf{E}} = - {{{{\mu }}}_{0}}\frac{{\partial {\mathbf{h}}}}{{\partial t}}\).

The equation (2.3) should read as \({\mathbf{E}} = - {{{{\mu }}}_{0}}\left( {\frac{{\partial {\mathbf{u}}}}{{\partial t}} \times {{H}_{0}}} \right)\).

The equation (2.5) should read as \(({{\lambda + \mu }})\nabla (\nabla .{\mathbf{u}}) + ({{\mu }} + K){{\nabla }^{2}}{\mathbf{u}} + K(\nabla \times \boldsymbol\phi ) - {{\nu }}\nabla \theta + {\mathbf{F}} + {\mathbf{G}} = \rho \frac{{{{\partial }^{2}}{\mathbf{u}}}}{{\partial {{t}^{2}}}}\).

The equation (2.6) should read as \((\alpha + \beta + \gamma )\nabla (\nabla .\boldsymbol\phi ) - \gamma \nabla \times (\nabla \times \boldsymbol\phi ) + K(\nabla \times {\mathbf{u}}) - 2K\boldsymbol\phi = \rho j\frac{{{{\partial }^{2}}\boldsymbol\phi }}{{\partial {{t}^{2}}}}.\)

The equation (2.11) should read as \({\mathbf{F}} = {{{{\mu }}}_{0}}({\mathbf{J}} \times {{{\mathbf{H}}}_{0}}),\) \({\mathbf{G}} = {{\rho }}g({{w}_{x}},0, - {{u}_{x}}).\)