Skip to main content
Log in

Lyapunov Functional Method in the Stability Problem of Volterra Integro-Differential Equations with Infinite Delay

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper considers the stability problem for a non-autonomous nonlinear integro-differential equation of Volterra type with infinite delay. The development of the Lyapunov functional method is carried out in both the limiting behavior study of a bounded solution as well as the asymptotic stability of the zero solution in all and some of the variables under the assumption of the corresponding Lyapunov functional existence with a semi-definite time derivative. The problems on the study of the motion limiting properties for a mechanical system with linear heredity as well as the stationary motion stabilization of a manipulator with viscoelastic cylindrical and spherical joints are solved. The control problem of a five-link robot manipulator is solved taking into account the viscoelasticity of its joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Volterra, Lecons Sur la Theorie Mathematique de la Lutte Pour la Vie (Gauthier-Villars, Paris, 1990).

  2. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover Publ., New York, 1959).

    MATH  Google Scholar 

  3. N. N. Krasovskii, Some Problems on Stability Motion Theory (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  4. C. Corduneanu and V. Lakshmikantham, “Equations with unbounded delay: a survey,” Nonlinear Anal., Theory, Methods Appl. 4, 831–877 (1980).

    MATH  Google Scholar 

  5. C. Corduneanu and V. Lakshmikantham, “Equations with unbounded delay,” Automat. Telemekh. No. 7, 5–44 (1985).

    MathSciNet  MATH  Google Scholar 

  6. B. D. Colleman and H. Dill, “On the stability of certain motions of incompressible materials with memory,” Arch. Ration. Mech. Anal. 30, 197–224 (1968).

    Article  Google Scholar 

  7. B. Coleman and V. Mizel, “On the stability of solutions of functional differential equations,” Arch. Ration. Mech. Anal. 30, 173–196 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. D. Colleman and D. R. Owen, “On the initial-value problem for a class of functional differential equations,” Arch. Ration. Mech. Anal. 55, 275–299 (1974).

    Article  MathSciNet  Google Scholar 

  9. J. Hale and J. Kato, “Phase space for retarded equations with infinite delay,” Fukcialaj Ekvacioj 21, 11–41 (1978).

    MathSciNet  MATH  Google Scholar 

  10. Y. Hino, “Stability properties for functional differential equations with infinite delay,” Tohoku Math. J. 35, 597–605 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay (Springer, Berlin, 1991).

    Book  MATH  Google Scholar 

  12. S. Murakami, “Perturbation theorems for functional differential equations with infinite delay via limiting equations,” J. Differ. Equations 59, 314–335 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Murakami and T. Naito, “Fading memory spaces and stability properties for functional differential equations with infinite delay,” Fukcialaj Ekvacioj 32, 91–105 (1989).

    MathSciNet  MATH  Google Scholar 

  14. K. Sawano, “Exponential asymptotic stability for functional differential equations with infinite retardations,” Tohoku Math. J. 31, 363–382 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Sawano, “Positively invariant sets for functional differential equations with infinite delay,” Tohoku Math. J. 32, 557–566 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Sawano, “Some considerations on the fundamental theorems for functional differential equations with infinite retardations,” Fukcialaj Ekvacioj 25, 97–104 (1982).

    MATH  Google Scholar 

  17. K. Schumacher, “Existence and continuous dependence for functional-differential equations with unbounded delay,” Arch. Ration Mech. Anal. 67, 315 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. V. Atkinson and J. R. Haddock, “On determining phase spaces for functional differential equations,” Funkcialaj Ekvacioj 31, 331–347 (1988).

    MathSciNet  MATH  Google Scholar 

  19. V. D. Goryachenko, Methods for Studying the Stability of Nuclear Reactors (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  20. V. B. Kolmanovskii and V. R. Nosov, Stability and Periodic Control Modes of Systems with Aftereffect (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  21. J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977).

    Book  MATH  Google Scholar 

  22. J. Haddock, T. Krisztin, and J. Terjeki, “Invariance principles for autonomous functional differential equations,” J. Integr. Equations 10, 123–136 (1985).

    MathSciNet  MATH  Google Scholar 

  23. B. S. Razumikhin, Stability of Hereditary Systems (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  24. A. S. Andreev, Stability of Non-Autonomous Functional Differential Equations (Ulyanovsk State Univ., Ulyanovsk, 2005) [in Russian].

    Google Scholar 

  25. O. A. Peregudova, “Development of the Lyapunov function method in the stability problem for functional-differential equations,” Differ. Equations 44, 1701–1710 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. S. Andreev, “The Lyapunov functionals method in stability problems for functional differential equations,” Autom. Remote Control 70 (9), 1438–1486 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Hino, “On stability of the solution of some functional differential equations,” Fukcialaj Ekvacioj 14, 47–60 (1971).

    MathSciNet  MATH  Google Scholar 

  28. J. Kato, “Stability problems in functional differential equations with infinite delay,” Fukcialaj Ekvacioj 21, 63–80 (1978).

    MathSciNet  MATH  Google Scholar 

  29. T. A. Burton, “Stability theory for delay equations,” Funkcialaj Ekvacioj 22, 67–76 (1979).

    MathSciNet  MATH  Google Scholar 

  30. J. Kato, “Liapunov’s second method in functional differential equations,” Tohoku Math. J. 32, 487–497 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Kato, Asymptotic Behavior in Functional Differential Equations with Infinite Delay (Springer, 1983).

    Book  MATH  Google Scholar 

  32. A. N. Tikhonov, “On functional equations of Volterra type and their applications to certain problems of mathematical physics,” Byull. Mosk. Univ. Sekt. A 1 (8), 1–25 (1938).

    Google Scholar 

  33. A. D. Myshkis, Linear Differential Equations with Retarded Arguments (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  34. Ya. V. Bykov, On Some Problems on Integro-Differential Equations (Kirghiz State Univ. Frunze, 1957) [in Russian].

  35. A. N. Filatov, Averaging Methods for Differential and Integrodifferential Equations (FAN, Tashkent, 1971) [in Russian].

    Google Scholar 

  36. M. K. Kerimov, “Bibliography of some new works on integral and integro-differential equations,” in Suppl. to V. Volterra’s Book Theory of Functionals, Integral and Integro-Differential Equations (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  37. T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations (Acad. Press, Orlando, 1985).

    MATH  Google Scholar 

  38. V. S. Sergeev, Lyapunov’s First Method in the Study of Systems Described by Integro-Differential Equations of Volterra Type (Dorodnicyn Computing Centre, RAS, Moscow, 2011) [in Russian].

  39. B. D. Colleman, M. E. Gurtin, R. Ismael Herrera, and C. Truesdell, Wave Propagation in Dissipative Materials (Springer, Berlin, 1965).

    Book  Google Scholar 

  40. V. Rezvan, Absolute Stability Automatic System with Delay (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  41. S. M. Belotserkovskii, B. K. Skripach, and V. G. Tabachnikov, The Wing in Unsteady Flow of Gas (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  42. S. M. Belotserkovskii, Yu. A. Kochetkov, A. A. Krasovskii, and V. V. Novitskii, Introduction to Aeroautoelasticity (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  43. V. S. Sergeev, “Stability of solutions of Volterra integrodifferential equations,” Math. Comput. Model. 45, 1376–1394 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  44. A. S. Andreev and O. A. Peregudova, “On the stability and stabilization problems of Volterra integral-differential equations,” Russ. J. Nonlin. Dyn. 14 (3), 387–407 (2018).

    MATH  Google Scholar 

  45. A. S. Andreev and O. A. Peregudova, “Nonlinear regulators in the position stabilization problem of the holonomic mechanical system,” Mech. Solids 53 (Suppl. 1), S22–S38 (2018). https://doi.org/10.3103/S0025654418030032

    Article  ADS  MATH  Google Scholar 

  46. A. S. Andreev and O. A. Peregudova, “On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations,” Zh. Srednevolzhsk. Matem. O-Va 20 (3), 260–272 (2018).

    MATH  Google Scholar 

  47. A. Andreev and O. Peregudova, “Volterra equations in the control problem of mechanical systems,” in Proc. 23rd Int. Conf. on System Theory, Control and Computing (ICSTCC) (Sinaia, 2019), pp. 298–303.

  48. V. S. Sergeev, “The stability of the equilibrium of a wing in an unsteady flow,” Prikl. Mat. Mekh. 64 (2), 219–228 (2000).

    Google Scholar 

  49. V. S. Sergeev, “On stability of viscoelastic plate equilibrium,” Autom. Remote Control 68 (9), 1544–1550 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  50. V. S. Sergeev, “A case of motional stability of railway wheel pair,” Auton. Remote Control 70, 1579–1583 (2009).

    Article  MATH  Google Scholar 

  51. A. Andreev and O. Peregudova, “Non-linear PI regulators in control problems for holonomic mechanical systems,” Syst. Sci. Control Eng. 6 (1), 12–19 (2018).

    Article  Google Scholar 

  52. V. V. Rumyantsev, “On motion’s stability with respect to a part of variables,” Vestn. Mosk. Gos. Univ., No. 4, 9–16 (1957).

  53. V. V. Rumyantsev, “On asymptotic stability and instability of motion with respect to a part of the variables,” Prikl. Mat. Mekh. 35 (1), 147–152 (1971).

    MathSciNet  Google Scholar 

  54. V. V. Rumyantsev and A. S. Osiraner, Stability and Stabilization of Motion with Respect to a Part of the Variables (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  55. V. I. Vorotnikov and V. V. Rumyantsev, Stability and Control in a Part of Coordinate of the Phase Vector of Dynamic Systems: Theory, Methods, and Applications (Nauchnyi Mir, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  56. V. V. Rumyantsev, “On the stability of steady motions,” Prikl. Mat. Mekh. 30 (8), 922–933 (1966).

    Google Scholar 

  57. V. V. Rumyantsev, On the Stability of Stationary Motions of Satellites (Regular&Chaotic Dynamics, Moscow, 2010) [in Russian].

  58. A. V. Karapetyan and V. V. Rumyantsev, “Stability of conservative and dissipative systems,” in Results of Science and Engineering. General Mechanics (VINITI, Moscow, 1983), Vol. 6 [in Russian].

  59. A. V. Karapetyan, Stability of Stationary Motions (URSS, Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  60. V. I. Kalenova, A. V. Karapetyan, V. M. Morozov, and M. A. Salmina, “Non-holonomic mechanical systems and stabilization of motion,” Fundam. Prikl. Mat. 11 (7), 117–158 (2005).

    Google Scholar 

  61. A. Karapetyan and A. Kuleshov, “The routh theorem for mechanical systems with unknown first integrals,” Theor. Appl. Mech. 44 (1) (2017).

  62. G. Sell, Topological Dynamics and Ordinary Differential Equations (Van Nostrand Reinhold, New York, 1971).

    MATH  Google Scholar 

  63. N. Rouche, P. Habets, and M. Laloy, Stability Theory by Lyapunov’s Direct Method (Springer, New York, 1977).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Andreev or O. A. Peregudova.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.S., Peregudova, O.A. Lyapunov Functional Method in the Stability Problem of Volterra Integro-Differential Equations with Infinite Delay. Mech. Solids 56, 1514–1533 (2021). https://doi.org/10.3103/S0025654421080033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421080033

Keywords:

Navigation