Skip to main content
Log in

Approximate Analysis of Extrusion Process for Green Type Porous Material

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The stationary motion of an ideally plastic compressible material in a converging conical channel is considered. It is assumed that the material obeys the Green’s yield condition and normality rule. It is assumed that the maximum friction law is fulfilled on the contact surface of the material with the channel wall. The Cauchy stress tensor as a function of the local density of the medium is determined by solving an ordinary nonlinear differential equation of the first order, and finding the density is reduced to calculating a definite integral. Analytical dependences, which specify a two-sided estimate of the density and pressure in the channel, are obtained for arbitrary plastic moduli. The analytical results are compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Nadai, “Über die Gleit- und Verzweigungsflächen einiger Gleichgewichtszustände bildsamer Massen und die Nachspannungen bleibend verzerrter Körper,” Z. Phys. 30, 106–138 (1924). https://doi.org/10.1007/BF01331828

    Article  MATH  ADS  Google Scholar 

  2. R. Hill, Mathematical Theory of Plasticity (The Clarendon Press, Oxford, 1950).

    MATH  Google Scholar 

  3. V. V. Sokolovskii, “Plane and axisymmetric equilibrium of plastic mass between rigid walls,” Prikl. Mat. Mekh. 14 (1), 75–92 (1950).

    MathSciNet  Google Scholar 

  4. R. T. Shield, “Plastic flow in a converging conical channel,” J. Mech. Phys. Solids 3, 246–258 (1955). https://doi.org/10.1016/0022-5096(55)90035-1

    Article  MathSciNet  ADS  Google Scholar 

  5. D. D. Ivlev and A. V. Romanov, “On the generalization of Prandtl’s solution in spherical coordinates,” J. Appl. Math. Mech. 46 (5), 246–258 (1982). https://doi.org/10.1016/0021-8928(82)90021-1

    Article  Google Scholar 

  6. S. Alexandrov and F. Barlat, “Modeling axisymmetric flow through a converging channel with an arbitrary yield condition,” Acta Mech. 133, 57–68 (1999). https://doi.org/10.1007/BF01179010

    Article  MATH  Google Scholar 

  7. O. V. Bonitskaya, R. V. Krasavin, and A. A. Markin, “The steady axisymmetric flow of ideally plastic materials in a conical channel,” J. Appl. Math. Mech. 74 (4), 494–500 (2010). https://doi.org/10.1016/j.jappmathmech.2010.09.016

    Article  MathSciNet  MATH  Google Scholar 

  8. D. V. Georgiyevskii, “Extrusion of a plastic material from a circular sector with a small apex angle and a sink at the vertex,” J. Appl. Math. Mech. 77 (1), 109–114 (2013). https://doi.org/10.1016/j.jappmathmech.2013.04.014

    Article  MathSciNet  MATH  Google Scholar 

  9. R. J. Green, “A plasticity theory for porous solids,” Int. J. Mech. Sci. 14, 215–224 (1972). https://doi.org/10.1016/0020-7403(72)90063-X

    Article  MATH  Google Scholar 

  10. V. Monchiet and D. Kondo, “Exact solution of a plastic hollow sphere with a Mises - Schleicher matrix,” Int. J. Eng. Sci. 51, 168–178 (2012). https://doi.org/10.1016/j.ijengsci.2011.10.007

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Thore, F. Pastor, J. Pastor, and D. Kondo, “Closed-form solutions for the hollow sphere model with Coulomb and Drucker-Prager materials under isotropic loadings,” C. R. Mec. 337, 260–267 (2009). https://doi.org/10.1016/j.crme.2009.06.030

    Article  MATH  ADS  Google Scholar 

  12. W. Q. Shen, J. F. Shao, L. Dormieux, and D. Kondo, “Approximate criteria for ductile porous materials having a green type matrix: application to double porous media,” Comput. Mater. Sci. 62, 189–194 (2012). https://doi.org/10.1016/j.commatsci.2012.05.021

    Article  Google Scholar 

  13. A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media,” Trans. ASME. J. Eng. Mater. Technol. 99, 2–15 (1977). https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  14. H. A. Kuhn and C. L. Downey, “Deformation characteristics and plasticity theory of sintered powder materials,” Int. J. Powder Metall. 7 (1), 15–25 (1971).

    Google Scholar 

  15. S. Shima and M. Oyane, “Plasticity theory for porous metals,” Int. J. Mech. Sci. 18, 285–291 (1976). https://doi.org/10.1016/0020-7403(76)90030-8

    Article  Google Scholar 

  16. Y. Corapcioglu and T. Uz, “Constitutive equations for plastic deformation of porous materials,” Powder Technol. 21 (2), 269–274 (1978). https://doi.org/10.1016/0032-5910(78)80095-3

    Article  Google Scholar 

  17. V. V. Skorokhod and L. I. Tuchinskii, “Condition of plasticity of porous bodies,” Sov. Powder Metall. Met. Ceram. 17 (11), 880–883 (1978). https://doi.org/10.1007/BF00792461

    Article  Google Scholar 

  18. P. Ponte Castaneda, “The effective mechanical properties of nonlinear isotropic composites,” J. Mech. Phys. Solids 39 (1), 45–71 (1991). https://doi.org/10.1016/0022-5096(91)90030-R

    Article  MathSciNet  MATH  Google Scholar 

  19. J. C. Michel and P. Suquet, “The constitutive law of nonlinear viscous and porous materials,” J. Mech. Phys. Solids 40 (4), 783–812 (1992). https://doi.org/10.1016/0022-5096(92)90004-L

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. D. Durban and M. E. Mear, “Asymptotic solution for extrusion of sintered powder metals,” Trans. ASME. J. Appl. Mech. 58, 582–584 (1991). https://doi.org/10.1115/1.2897226

    Article  ADS  Google Scholar 

  21. S. Alexandrov, O. Chesnikova, and A. Pirumov, “An approximate solution for axisymmetric extrusion of porous material,” J. Technol. Plast. 32 (1-2), 13–27 (2007).

    Google Scholar 

  22. S. E. Alexandrov and B. A. Druyanov, “Investigating the process of the steady extrusion of a compacted material,” J. Appl. Mech. Tech. Phys. 31 (4), 645–649 (1990). https://doi.org/10.1007/BF00851344

    Article  ADS  Google Scholar 

  23. B. Revil-Baudard and O. Cazacu, “Role of the plastic flow of the matrix on yielding and void evolution of porous solids: comparison between the theoretical response of porous solids with Tresca and von Mises matrices,” Mech. Res. Commun. 56, 69–75 (2014). https://doi.org/10.1016/j.mechrescom.2013.11.008

    Article  Google Scholar 

  24. H.-K. Oh and J.-W. Phark, “A study of the axi-symmetric forward extrusion of porous metal through a square die,” J. Mech. Work. Technol. 15, 119–130 (1987). https://doi.org/10.1016/0378-3804(87)90029-5

    Article  Google Scholar 

  25. M. Itskov, Tensor Algebra and Tensor Analysis for Engineers. With Applications to Continuum Mechanics (Springer, Cham, 2015).

    MATH  Google Scholar 

  26. G. B. Crosta, P. S. Powers, and W. Z. Savage, “A study of flow development in mass movements of granular materials,” Dept. of the Interior, U.S. Geological Survey. Open File Report No. 91-383 (1991).

    Book  Google Scholar 

Download references

Funding

The work was supported by of the Russian Foundation for Basic Research, project no. 18-31-00189.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Sevastyanov or A. M. Sevastyanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Petrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevastyanov, G.M., Sevastyanov, A.M. Approximate Analysis of Extrusion Process for Green Type Porous Material. Mech. Solids 56, 1363–1372 (2021). https://doi.org/10.3103/S0025654421070220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421070220

Keywords

Navigation