Skip to main content
Log in

Exemplification in Exact and Approximate Secular Equation of Surface Wave Along Distinct Interfaces with Sliding Contact

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Acomparison between the exact and approximate secular equation of Rayleigh waves in a Kelvin Voigt viscoelastic plate supported by an orthotropic continuum under initial stress and gravity is studied analytically as well as graphically. The effective boundary condition method is applied to obtain the approximate and exact formulas for the secular equation in a described model. Based on the obtained dispersion equation, the effects of sliding contact on the Rayleigh wave propagation is considered through numerical data. The obtained secular equation is totally explicit and it is a good tool for non destructively evaluating the adhesive bond between the layer and half space as well as their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. C. Vinh and V. T. N. Anh, “Rayleigh waves in an orthotropic elastic half-space overlaid by an elastic layer with spring contact,” Meccanica 52, 1189–1199 (2017). https://doi.org/10.1007/s11012-016-0464-5

    Article  MathSciNet  MATH  Google Scholar 

  2. N. T. Nam, J. Merodio, and P. C. Vinh, “The secular equation for non-principal Rayleigh waves in deformed incompressible doubly fiber-reinforced nonlinearly elastic solids,” Int. J. Non-Lin. Mech. 84, 23–30 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.04.006

    Article  Google Scholar 

  3. P. C. Vinh, V. T. N. Anh and N. T. K.Linh, “On a technique for deriving the explicit secular equation of Rayleigh waves in an orthotropic half-space coated by an orthotropic layer,” Waves Random Complex Media 26 (2), 176–188 (2016). https://doi.org/10.1080/17455030.2015.1132859

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. P. K. Currie, “The secular equation for Rayleigh waves on elastic crystals,” Q. J. Mech. Appl. Math. 32 (2), 163–173 (1979). https://doi.org/10.1093/qjmam/32.2.163

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Hayes and R. S. Rivlin, “A note on the secular equation for Rayleigh waves,” Z. Angew. Math. Phys. 13 (1), 80–83, 1962. https://doi.org/10.1007/BF01600759

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Carcione, “Rayleigh waves in isotropic viscoelastic media,” Geophys. J. Int. 108 (2), 453–464, (1992). https://doi.org/10.1111/j.1365-246X.1992.tb04628.x

    Article  ADS  Google Scholar 

  7. M. A. Biot, Mechanics of Incremental Deformation (Wiley, New York, 1956).

    Google Scholar 

  8. P. Chi Vinh and V. Thi Ngoc Anh, “Rayleigh waves in a layered orthotropic elastic half-space with sliding contact,” J. Vib. Control. 24 (10), 2070–2079 (2018). https://doi.org/10.1177/1077546316677211

    Article  MathSciNet  Google Scholar 

  9. P. C. Vinh, V. T. N. Anh, and N. T. K. Linh, “Exact secular equations of Rayleigh waves in an orthotropic elastic half-space overlaid by an orthotropic elastic layer,” Int. J. Solids Struct. 83, 65–72 (2016). https://doi.org/10.1016/j.ijsolstr.2015.12.032

    Article  Google Scholar 

  10. C. V. Pham and A. Vu, “Effective boundary condition method and approximate secular equations of Rayleigh waves in orthotropic half-spaces coated by a thin layer,” J. Mech. Mater. Struct. 11 (3), 259–277 (2016). https://doi.org/10.2140/jomms.2016.11.259

    Article  MathSciNet  Google Scholar 

  11. P. C. Vinh and G. Seriani, “Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity,” Wave Motion. 46 (7), 427–434 (2009). https://doi.org/10.1016/j.wavemoti.2009.04.003

    Article  MathSciNet  MATH  Google Scholar 

  12. A. N. Stroh, “Steady state problems in anisotropy elasticity,” J. Math. Phys. 41, 77–103 (1962).

    Article  MathSciNet  Google Scholar 

  13. B. K. Datta, “Some observations on interactions of Rayleigh waves in an elastic solid medium with the gravity field, Revue roumaine des sciences techniques,” Rev. Roum. Sci. Tech. Ser. Mec. Appl. 31 (4), 369–374 (1986).

    Google Scholar 

  14. P. C. Pal, S.Kumar and S.Bose, “Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium,” Ain Shams Eng. J. 6 (2), 621–627 (2015). https://doi.org/10.1016/j.asej.2014.11.003

    Article  Google Scholar 

  15. R. W. Ogden and P. C. Vinh, “On Rayleigh waves in incompressible orthotropic elastic solids,” J. Acoust. Soc. Am. 115 (2), 530–533 (2004). https://doi.org/10.1121/1.1636464

    Article  ADS  Google Scholar 

  16. P. Chadwick, “The existence of pure surface modes in elastic materials with orthorhombic symmetry,” J. Sound Vib. 47 (1), 39–52 (1976). https://doi.org/10.1016/0022-460X(76)90406-5

    Article  ADS  MATH  Google Scholar 

  17. P. C. Vinh, V. T. N. Anh, and V. P. Thanh, “Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact,” Wave Motion. 51(3), 496–504 (2014). https://doi.org/10.1016/j.wavemoti.2013.11.008

    Article  MathSciNet  MATH  Google Scholar 

  18. J. D. Achenbach and S. P. Keshava, “Free waves in a plate supported by a semi-infinite continuum,” J. Appl. Mech. 34 (2), 397–404 (1967). https://doi.org/10.1115/1.3607696

    Article  ADS  Google Scholar 

  19. D. Gubbins, Seismology and Plate Ttectonics (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  20. A. M. Abd-Alla, S. M. Abo-Dahab, and T. A. Al-Thamali, “Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity,” Mech. Sci. Technol. 26 (9), 2815–2823 (2012). https://doi.org/10.1007/s12206-012-0736-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehamoy Pramanik.

Appendices

APPENDIX I

$$\begin{gathered} {{{\bar {\Delta }}}_{{02}}} = {{R}_{{11}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right),\quad {{{\bar {\Delta }}}_{{002}}} = {{R}_{{11}}}\left[ {\frac{1}{6}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{19}}}} \right){{X}_{{17}}} - i\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right) + {{X}_{{18}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right)} \right], \\ {{{\bar {\Delta }}}_{{03}}} = \frac{1}{6}\left[ {\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + 1} \right){{X}_{{16}}} - {{X}_{{22}}} - \left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right)} \right],\quad {{{\bar {\Delta }}}_{{04}}} = \frac{{{{R}_{{11}}}}}{2}{{X}_{{20}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right), \\ {{{\bar {\Delta }}}_{{06}}} = \frac{1}{3}\left[ {{{X}_{{29}}} - {{X}_{{26}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right) - \left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right)\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right)} \right],\quad {{{\bar {\Delta }}}_{{07}}} = {{X}_{{15}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right), \\ {{{\bar {\Delta }}}_{{08}}} = {{R}_{{11}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right),\quad {{{\bar {\Delta }}}_{{09}}} = \left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right){{X}_{{21}}} - i\left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{25}}}} \right) + \left( {\frac{{{{\zeta }^{2}}}}{{{{X}_{{32}}}}} + {{X}_{{14}}}} \right), \\ \end{gathered} $$
$$\begin{gathered} {{{\bar {W}}}_{{1'}}} = - i{{{\bar {\xi }}}_{1}} + i{{{\bar {\xi }}}_{1}}{{{\bar {\gamma }}}_{1}}^{2} + {{{\bar {\gamma }}}_{1}},\quad {{{\bar {W}}}_{2}}' = - i{{{\bar {\xi }}}_{2}} + i{{{\bar {\xi }}}_{2}}\bar {\gamma }_{2}^{2} + {{{\bar {\gamma }}}_{2}},\quad {{{\bar {W}}}_{4}} = {{X}_{{30}}} + {{X}_{{31}}}\bar {\gamma }_{1}^{2} - 2i{{{\bar {\xi }}}_{1}}{{{\bar {\gamma }}}_{1}}, \\ {{{\bar {W}}}_{5}} = {{X}_{{30}}} + {{X}_{{31}}}{{{\bar {\gamma }}}_{2}}^{2} - 2i{{{\bar {\xi }}}_{2}}{{{\bar {\gamma }}}_{2}},\quad {{{\bar {W}}}_{6}} = i{{{\bar {\xi }}}_{1}} - {{{\bar {\gamma }}}_{1}},\quad {{{\bar {W}}}_{7}} = i{{{\bar {\xi }}}_{2}} - {{{\bar {\gamma }}}_{2}},\quad {{{\bar {F}}}_{0}} = {{X}_{{28}}}\left( {{{{\bar {W}}}_{{1'}}}{{{\bar {d}}}_{1}}{{{\bar {W}}}_{5}} - {{{\bar {W}}}_{{2'}}}{{{\bar {d}}}_{1}}{{{\bar {W}}}_{4}}} \right), \\ {{{\bar {F}}}_{1}} = X_{{28}}^{2}\left( {{{{\bar {W}}}_{{2'}}}{{{\bar {W}}}_{6}}{{{\bar {d}}}_{3}} - {{{\bar {W}}}_{{1'}}}{{{\bar {d}}}_{3}}{{{\bar {W}}}_{7}}} \right),\quad {{{\bar {F}}}_{2}} = {{X}_{{28}}}\left( {{{{\bar {W}}}_{{2'}}}{{{\bar {d}}}_{2}}{{{\bar {W}}}_{5}} - {{{\bar {W}}}_{{2'}}}{{{\bar {d}}}_{2}}{{{\bar {W}}}_{4}}} \right), \\ {{{\bar {F}}}_{3}} = X_{{28}}^{2}\left( {{{{\bar {W}}}_{{2'}}}{{{\bar {d}}}_{4}}{{{\bar {W}}}_{6}} - {{{\bar {W}}}_{{1'}}}{{{\bar {d}}}_{4}}{{{\bar {W}}}_{7}}} \right),\quad G = \frac{g}{{{{c}^{2}}k}}, \\ \end{gathered} $$
$$\begin{gathered} \zeta = \sqrt {\frac{{{{c}^{2}}}}{{\beta _{1}^{2}}}} ,\quad {{{\bar {\xi }}}_{i}} = \frac{{(\gamma _{1}^{2} - {{{\bar {a}}}^{2}})}}{{{{\zeta }^{2}}{{{\left( {\frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}}} \right)}}^{2}}G}}{{{\bar {\eta }}}_{1}}^{2},\quad {{\beta }_{2}} = \sqrt {\frac{{{{C}_{{44}}}}}{{{{\rho }_{2}}}}} ,\quad {{{\bar {\eta }}}_{1}} = \sqrt {\frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} + 2{{I}_{2}}} , \\ {{{\bar {\eta }}}_{2}} = \sqrt {2\frac{{{{C}_{{33}}}}}{{{{C}_{{44}}}}} - \frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} - \frac{{{{C}_{{13}}}}}{{{{C}_{{44}}}}} - 2{{I}_{2}}} , \\ {{I}_{2}} = \frac{{{{P}_{2}}}}{{{{C}_{{44}}}}},\quad {{I}_{1}} = \frac{{{{P}_{1}}}}{{2{{\mu }_{1}}}},\quad \bar {a} = \sqrt {{{\zeta }^{2}}{{{\left( {\frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}}} \right)}}^{2}}\left( {\frac{1}{{\frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} + 2{{I}_{2}}}}} \right) - 1} , \quad \bar {b} = \sqrt {\frac{{2{{\zeta }^{2}}{{{\left( {\frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}}} \right)}}^{2}} - \frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} + 2{{I}_{2}}}}{{2\frac{{{{C}_{{33}}}}}{{{{C}_{{44}}}}} - \frac{{\left( {{{C}_{{11}}} + {{C}_{{13}}}} \right)}}{{{{C}_{{44}}}}} - 2{{I}_{2}}}}} , \\ \end{gathered} $$
$$\begin{gathered} {{\beta }_{{21}}} = \frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}},\quad {{{\bar {\gamma }}}_{1}} = - \frac{{\sqrt {{{{\bar {a}}}^{2}} + {{{\bar {b}}}^{2}} - \sqrt {{{{\bar {a}}}^{4}} - 2{{{\bar {b}}}^{2}}{{{\bar {a}}}^{2}} + {{{\bar {b}}}^{4}} + 4t_{{22}}^{2}} } }}{{\sqrt 2 }}, \\ {{{\bar {\gamma }}}_{2}} = - \frac{{\sqrt {{{{\bar {a}}}^{2}} + {{{\bar {b}}}^{2}} + \sqrt {{{{\bar {a}}}^{4}} - 2{{{\bar {b}}}^{2}}{{{\bar {a}}}^{2}} + {{{\bar {b}}}^{4}} + 4t_{{22}}^{2}} } }}{{\sqrt 2 }}, \\ \end{gathered} $$
$${{X}_{{11}}} = \beta _{{21}}^{2}\left( {\frac{1}{{\frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} + 2{{I}_{2}}}}} \right),\quad {{X}_{{12}}} = \frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} + \frac{{{{C}_{{13}}}}}{{{{C}_{{44}}}}} + 2{{I}_{2}},\quad {{X}_{{13}}} = 2\frac{{{{C}_{{33}}}}}{{{{C}_{{44}}}}} - \frac{{{{C}_{{11}}}}}{{{{C}_{{44}}}}} - \frac{{{{C}_{{13}}}}}{{{{C}_{{44}}}}} - 2{{I}_{2}},$$
$${{X}_{{14}}} = \frac{{R_{{22}}^{2}}}{{R_{{11}}^{2}}} - 1,\quad {{X}_{{15}}} = - \frac{1}{2}{{R}_{{11}}}\left( {\frac{{{{R}_{{22}}}}}{{{{R}_{{11}}}}} + {{R}_{{44}}}} \right),\quad {{X}_{{16}}} = \left( {\frac{{{{R}_{{66}}}}}{{{{R}_{{44}}}}} + \frac{{{{R}_{{11}}}}}{{{{R}_{{33}}}}}\frac{{{{R}_{{66}}}}}{{R_{{44}}^{2}}}} \right),$$
$${{X}_{{17}}} = \left( {\frac{{{{R}_{{66}}}}}{{{{R}_{{44}}}}} - \frac{{{{R}_{{22}}}}}{{{{R}_{{11}}}{{R}_{{44}}}}}} \right),\quad {{X}_{{18}}} = \frac{{{{R}_{{22}}}{{R}_{{66}}}}}{{{{R}_{{11}}}{{R}_{{44}}}}},\quad {{X}_{{19}}} = \frac{{R_{{22}}^{2}}}{{R_{{11}}^{2}}} - 1,\quad {{X}_{{20}}} = \frac{{{{R}_{{66}}}}}{{R_{{44}}^{2}}} - \frac{1}{{{{R}_{{44}}}}},$$
$${{X}_{{21}}} = \frac{{{{R}_{{22}}}}}{{{{R}_{{11}}}}} - {{R}_{{66}}},\quad {{X}_{{22}}} = \frac{{{{R}_{{66}}}{{R}_{{66}}}}}{{{{R}_{{44}}}}},\quad {{X}_{{23}}} = \beta _{{21}}^{2}G,\quad {{X}_{{24}}} = \frac{{\bar {\eta }_{1}^{2}}}{{\beta _{{21}}^{2}G}},\quad {{X}_{{25}}} = \frac{{{{I}_{1}}}}{{{{R}_{{11}}}}},$$
$${{X}_{{26}}} = \frac{{{{R}_{{11}}}}}{{{{R}_{{33}}}}},\quad {{X}_{{27}}} = \frac{1}{{{{{\bar {\eta }}}_{1}}{{{\bar {\eta }}}_{2}}}},\quad {{X}_{{28}}} = 2\frac{{{{\mu }_{1}}}}{{{{C}_{{44}}}}},\quad {{X}_{{29}}} = {{R}_{{66}}}{{R}_{{44}}},\quad {{X}_{{30}}} = \frac{{{{C}_{{13}}}}}{{{{C}_{{44}}}}},\quad {{X}_{{31}}} = \frac{{{{C}_{{33}}}}}{{{{C}_{{44}}}}},$$
$${{X}_{{32}}} = 2{{R}_{{11}}},\quad {{R}_{{44}}} = \left( {1 - \frac{{{{I}_{1}}}}{{(1 + i{{\delta }_{{{{\mu }_{1}}}}})}}} \right),\quad {{R}_{{66}}} = - \left( {\frac{{\frac{{{{\lambda }_{1}}}}{{2{{\mu }_{1}}}} + {{\delta }_{\lambda }}\frac{{{{\lambda }_{1}}}}{{2{{\mu }_{1}}}} + {{I}_{1}}}}{{\left( {1 + \frac{{{{\lambda }_{1}}}}{{2{{\mu }_{1}}}}} \right) + \frac{{{{\lambda }_{1}}}}{{2\mu }}{{\delta }_{\lambda }}}} + {{\delta }_{\mu }}} \right),$$

APPENDIX II

$$\begin{gathered} {{{\bar {\bar {\Delta }}}}_{{02}}} = {{{\bar {R}}}_{{11}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right), \\ {{{\bar {\bar {\Delta }}}}_{{002}}} = {{{\bar {R}}}_{{11}}}\left[ {\frac{1}{6}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{19}}}} \right){{{\bar {X}}}_{{17}}} - i\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right) + {{{\bar {X}}}_{{18}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right)} \right], \\ {{{\bar {\bar {\Delta }}}}_{{03}}} = \frac{1}{6}\left[ {\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + 1} \right){{{\bar {X}}}_{{16}}} - {{{\bar {X}}}_{{22}}} - \left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right)} \right],\quad {{{\bar {\bar {\Delta }}}}_{{04}}} = \frac{{{{{\bar {R}}}_{{11}}}}}{2}{{{\bar {X}}}_{{20}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right), \\ {{{\bar {\bar {\Delta }}}}_{{06}}} = \frac{1}{3}\left[ {{{{\bar {X}}}_{{29}}} - {{{\bar {X}}}_{{26}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right) - \left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right)\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right)} \right],\quad {{{\bar {\bar {\Delta }}}}_{{07}}} = {{{\bar {X}}}_{{15}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right), \\ {{{\bar {\bar {\Delta }}}}_{{08}}} = {{{\bar {R}}}_{{11}}}\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right),\quad {{{\bar {\bar {\Delta }}}}_{{09}}} = \left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right){{{\bar {X}}}_{{21}}} - i\left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{25}}}} \right) + \left( {\frac{{{{\zeta }^{2}}}}{{{{{\bar {X}}}_{{32}}}}} + {{{\bar {X}}}_{{14}}}} \right), \\ \end{gathered} $$
$$\begin{gathered} {{{\bar {\bar {W}}}}_{{1'}}} = - i{{{\bar {\bar {\xi }}}}_{1}} + i{{{\bar {\bar {\xi }}}}_{1}}\bar {\bar {\gamma }}_{1}^{2} + {{{\bar {\bar {\gamma }}}}_{1}},\quad {{{\bar {\bar {W}}}}_{2}}' = - i{{{\bar {\bar {\xi }}}}_{2}} + i{{{\bar {\bar {\xi }}}}_{2}}\bar {\bar {\gamma }}_{2}^{2} + {{{\bar {\bar {\gamma }}}}_{2}},\quad {{{\bar {\bar {W}}}}_{4}} = {{{\bar {X}}}_{{30}}} + {{{\bar {X}}}_{{31}}}\bar {\bar {\gamma }}_{1}^{2} - 2i{{{\bar {\bar {\xi }}}}_{1}}{{{\bar {\bar {\gamma }}}}_{1}}, \\ {{{\bar {\bar {W}}}}_{5}} = {{{\bar {X}}}_{{30}}} + {{{\bar {X}}}_{{31}}}\bar {\bar {\gamma }}_{2}^{2} - 2i{{{\bar {\bar {\xi }}}}_{2}}{{{\bar {\bar {\gamma }}}}_{2}},\quad {{{\bar {\bar {W}}}}_{6}} = i{{{\bar {\bar {\xi }}}}_{1}} - {{{\bar {\bar {\gamma }}}}_{1}},\quad {{{\bar {\bar {W}}}}_{7}} = i{{{\bar {\bar {\xi }}}}_{2}} - {{{\bar {\bar {\gamma }}}}_{2}},\quad {{{\bar {\bar {F}}}}_{0}} = {{{\bar {X}}}_{{28}}}({{{\bar {\bar {W}}}}_{{1'}}}{{{\bar {\bar {d}}}}_{1}}{{{\bar {\bar {W}}}}_{5}} - {{{\bar {\bar {W}}}}_{{2'}}}{{{\bar {\bar {d}}}}_{1}}{{{\bar {\bar {W}}}}_{4}}), \\ {{{\bar {\bar {F}}}}_{1}} = \bar {X}_{{28}}^{2}({{{\bar {\bar {W}}}}_{{2'}}}{{{\bar {\bar {W}}}}_{6}}{{{\bar {\bar {d}}}}_{3}} - {{{\bar {\bar {W}}}}_{{1'}}}{{{\bar {\bar {d}}}}_{3}}{{{\bar {\bar {W}}}}_{7}}),\quad {{{\bar {\bar {F}}}}_{2}} = {{{\bar {X}}}_{{28}}}({{{\bar {\bar {W}}}}_{{2'}}}{{{\bar {\bar {d}}}}_{2}}{{{\bar {\bar {W}}}}_{5}} - {{{\bar {\bar {W}}}}_{{2'}}}{{{\bar {\bar {d}}}}_{2}}{{{\bar {\bar {W}}}}_{4}}), \\ {{{\bar {\bar {F}}}}_{3}} = {{{\bar {X}}}_{{28}}}^{2}({{{\bar {\bar {W}}}}_{{2'}}}{{{\bar {\bar {d}}}}_{4}}{{{\bar {\bar {W}}}}_{6}} - {{{\bar {\bar {W}}}}_{{1'}}}{{{\bar {\bar {d}}}}_{4}}{{{\bar {\bar {W}}}}_{7}}), \\ \zeta = \sqrt {\frac{{{{c}^{2}}}}{{\bar {\beta }_{1}^{2}}}} ,\quad {{{\bar {\bar {\xi }}}}_{i}} = \frac{{(\bar {\bar {\gamma }}_{1}^{2} - {{{\bar {\bar {a}}}}^{2}})}}{{{{\zeta }^{2}}{{{\left( {\frac{{{{{\bar {\beta }}}_{1}}}}{{{{{\bar {\beta }}}_{2}}}}} \right)}}^{2}}}}{{{\bar {\bar {\eta }}}}_{1}}^{2},\quad {{{\bar {\beta }}}_{2}} = \sqrt {\frac{\mu }{\rho }} ,\quad {{{\bar {\bar {\eta }}}}_{1}} = \sqrt {\frac{{\lambda + 2\mu }}{\mu }} ,\quad {{{\bar {\bar {\eta }}}}_{2}} = \sqrt {2\frac{{\lambda + 2\mu }}{\mu } - \frac{{\lambda + 2\mu }}{\mu } - \frac{\lambda }{\mu }} , \\ \bar {\bar {a}} = \sqrt {{{\zeta }^{2}}{{{\left( {\frac{{{{{\bar {\beta }}}_{1}}}}{{{{{\bar {\beta }}}_{2}}}}} \right)}}^{2}}\left( {\frac{1}{{\frac{{\lambda + 2\mu }}{\mu }}}} \right) - 1} ,\quad \bar {\bar {b}} = \sqrt {\frac{{2{{\zeta }^{2}}{{{\left( {\frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}}} \right)}}^{2}} - \frac{{\lambda + 2\mu }}{\mu }}}{{2\frac{{\lambda + 2\mu }}{\mu } - \frac{{\left( {2\lambda + 4\mu } \right)}}{\mu }}},} \\ \end{gathered} $$
$$\begin{gathered} {{\beta }_{{21}}} = \frac{{{{{\bar {\beta }}}_{1}}}}{{{{{\bar {\beta }}}_{2}}}},\quad {{{\bar {\bar {\gamma }}}}_{1}} = - \frac{{\sqrt {{{{\bar {\bar {a}}}}^{2}} + {{{\bar {\bar {b}}}}^{2}} - \sqrt {{{{\bar {\bar {a}}}}^{4}} - 2{{{\bar {\bar {b}}}}^{2}}{{{\bar {\bar {a}}}}^{2}} + {{{\bar {\bar {b}}}}^{4}} + 4\bar {t}_{{22}}^{2}} } }}{{\sqrt 2 }}, \\ {{{\bar {\bar {\gamma }}}}_{2}} = - \frac{{\sqrt {{{{\bar {\bar {a}}}}^{2}} + {{{\bar {\bar {b}}}}^{2}} + \sqrt {{{{\bar {\bar {a}}}}^{4}} - 2{{{\bar {\bar {b}}}}^{2}}{{{\bar {\bar {a}}}}^{2}} + {{{\bar {\bar {b}}}}^{4}} + 4\bar {t}_{{22}}^{2}} } }}{{\sqrt 2 }}, \\ \end{gathered} $$
$${{\bar {X}}_{{11}}} = \beta _{{21}}^{2}\left( {\frac{1}{{\frac{{\lambda + 2\mu }}{\mu }}}} \right),\quad {{\bar {X}}_{{12}}} = \frac{{\lambda + 2\mu }}{\mu } + \frac{\lambda }{\mu },\quad {{\bar {X}}_{{13}}} = 2\frac{{\lambda + 2\mu }}{\mu } - \frac{{\lambda + 2\mu }}{\mu } - \frac{\lambda }{\mu },$$
$${{\bar {X}}_{{14}}} = \frac{{\bar {R}_{{22}}^{2}}}{{\bar {R}_{{11}}^{2}}} - 1,\quad {{\bar {X}}_{{15}}} = - \frac{1}{2}{{\bar {R}}_{{11}}}\left( {\frac{{{{{\bar {R}}}_{{22}}}}}{{{{{\bar {R}}}_{{11}}}}} + {{{\bar {R}}}_{{44}}}} \right),\quad {{\bar {X}}_{{16}}} = \left( {\frac{{{{{\bar {R}}}_{{66}}}}}{{{{{\bar {R}}}_{{44}}}}} + \frac{{{{{\bar {R}}}_{{11}}}}}{{{{{\bar {R}}}_{{33}}}}}\frac{{{{{\bar {R}}}_{{66}}}}}{{\bar {R}_{{44}}^{2}}}} \right),$$
$${{\bar {X}}_{{17}}} = \left( {\frac{{{{{\bar {R}}}_{{66}}}}}{{{{{\bar {R}}}_{{44}}}}} - \frac{{{{{\bar {R}}}_{{22}}}}}{{{{{\bar {R}}}_{{11}}}{{{\bar {R}}}_{{44}}}}}} \right),\quad {{\bar {X}}_{{18}}} = \frac{{{{{\bar {R}}}_{{22}}}{{{\bar {R}}}_{{66}}}}}{{{{{\bar {R}}}_{{11}}}{{{\bar {R}}}_{{44}}}}},\quad {{\bar {X}}_{{19}}} = \frac{{\bar {R}_{{22}}^{2}}}{{\bar {R}_{{11}}^{2}}} - 1, \quad {{\bar {X}}_{{20}}} = \frac{{{{{\bar {R}}}_{{66}}}}}{{\bar {R}_{{44}}^{2}}} - \frac{1}{{{{{\bar {R}}}_{{44}}}}},$$
$$\begin{gathered} {{{\bar {X}}}_{{21}}} = \frac{{{{{\bar {R}}}_{{22}}}}}{{{{{\bar {R}}}_{{11}}}}} - {{{\bar {R}}}_{{66}}},\quad {{{\bar {X}}}_{{22}}} = \frac{{{{{\bar {R}}}_{{66}}}{{{\bar {R}}}_{{66}}}}}{{{{{\bar {R}}}_{{44}}}}},\quad {{{\bar {X}}}_{{23}}} = \beta _{{21}}^{2},\quad {{{\bar {X}}}_{{24}}} = \frac{{\bar {\bar {\eta }}_{1}^{2}}}{{\beta _{{21}}^{2}}},\quad {{{\bar {X}}}_{{25}}} = 0, \\ {{{\bar {X}}}_{{26}}} = \frac{{{{{\bar {R}}}_{{11}}}}}{{{{{\bar {R}}}_{{33}}}}},\quad {{{\bar {X}}}_{{27}}} = \frac{1}{{{{{\bar {\bar {\eta }}}}_{1}}{{{\bar {\bar {\eta }}}}_{2}}}},\quad {{{\bar {X}}}_{{28}}} = 2,\quad {{{\bar {X}}}_{{29}}} = {{{\bar {R}}}_{{66}}}{{{\bar {R}}}_{{44}}},\quad {{{\bar {X}}}_{{30}}} = \frac{\lambda }{\mu },\quad {{{\bar {X}}}_{{31}}} = \frac{{\lambda + 2\mu }}{\mu }, \\ {{{\bar {X}}}_{{32}}} = 2{{R}_{{11}}},\quad {{{\bar {R}}}_{{44}}} = 1,\quad {{{\bar {R}}}_{{66}}} = - \left( {\frac{{\frac{\lambda }{{2\mu }}}}{{\left( {1 + \frac{\lambda }{{2\mu }}} \right)}}} \right), \\ \end{gathered} $$
$$\begin{array}{*{20}{l}} {{{{\bar {R}}}_{{11}}} = \left( {\left( {1 + \frac{{\bar {\lambda }}}{{2\bar {\mu }}}} \right)} \right),\quad {{{\bar {R}}}_{{22}}} = \frac{{\bar {\lambda }}}{{2\bar {\mu }}},\quad {{{\bar {R}}}_{{33}}} = 0.5,\quad {{{\bar {\beta }}}_{1}} = \sqrt {\frac{{\bar {\mu }}}{{\bar {\rho }}}} } \end{array}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Pramanik, S. & Smita Exemplification in Exact and Approximate Secular Equation of Surface Wave Along Distinct Interfaces with Sliding Contact. Mech. Solids 56, 819–837 (2021). https://doi.org/10.3103/S0025654421050101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421050101

Keywords:

Navigation