Skip to main content
Log in

Fractography, Fracture Toughness and Structural Turbulence Under Low-Temperature Shock Loading of a Nonequilibrium Titanium Alloy Ti–6Al–4V

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The titanium alloy Ti–6Al–4V with strongly nonequilibrium α- and β-phases has been studied for the first time. For this, it was subjected to cross-helical rolling (CHR) at T = 1000°C (above the polymorphic transformation temperature), and then quenched in water in order to partially preserve vanadium in the α-phase, and aluminum in the β-phase. Under active uniaxial tension, the non-equilibrium VT6 alloy was deformed in the absence of strain hardening at room temperature. Alloys treated with CHR below the polymorphic transformation temperature showed traditional parabolic hardening. The non-equilibrium of the VT6 alloy caused a strong increase in its impact toughness at low temperatures down to T = –70°C. The fatigue life of a nonequilibrium alloy has doubled. If the initial alloy has ductile-brittle fracture at low negative temperatures, then the nonequilibrium alloy deforms viscously with all signs of structural turbulence. Structural turbulence in a nonequilibrium alloy manifests itself in the temperature range from 20 to –70°C, during deformation of 3D-printed samples, under conditions of shock separation of diffusion-sintered multilayer VT6 alloy packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Peters, A. Gysler, and G. Lütyering, Titanium’80. Science and Technology (AIME, Warrendale, USA, 1980).

    Google Scholar 

  2. J. J. Lucas, R. I. Jaffee, and H. M. Burte, “Improvements in the fatigue strength of Ti–6Al–4V forgings,” in Titanium Science and Technology, Ed. by R.I. Jaffee, H.M. Burte (Plenum Press, New York, 1973), pp. 2081–2096.

    Google Scholar 

  3. U. Zwicker, Titan and Titanlegierungen (Springer, Berlin, 1974).

    Book  Google Scholar 

  4. E. W. Collings, The Physical Metallurgy of Titanium Alloys (American Society for Metals, 1984).

    Google Scholar 

  5. V. E. Panin, A. V. Panin, O. B. Perevalova, and A. R. Shugurov, “Mesoscopic structural states at the nanoscale in the surface layers of titanium and its alloy Ti–6Al–4V in ultrasonic and electron beam treatment,” Fiz. Mezomekh. 21 (5), 5–15 (2018).

    Google Scholar 

  6. V. E. Panin, N. S. Surikova, A. S. Smirnova, and Yu. I. Pochivalov, “Mesoscopic structural states under plastic deformation of nanostructured metallic materials,” Fiz. Mezomekh. 21 (3), 12–17 (2018).

    Google Scholar 

  7. V. E. Panin, L. S. Derevyagina, S. V. Panin, et al., “The role of nanoscale strain-induced defects in the sharp increase of low-temperature toughness in low-carbon and low-alloy steels,” Mater. Sci. Eng. A 768, 138491 (2019).

    Article  Google Scholar 

  8. V. E. Panin, I. A. Shulepov, L. S. Derevyagina, et al., “Generation of nanoscale mesoscopic structural states for martensitic phase formation in low-alloy steel in order to obtain high low-temperature toughness,” Fiz. Mezomekh. 22 (6), 5–13 (2019).

    Google Scholar 

  9. V. E. Panin, I. A. Shulepov, A. V. Panin, et al., “The effect of nanoscale mesoscopic structural states associated with lattice curvature on the mechanical behavior of Ti–6Al–4V alloy,” Fiz. Mezomekh. 22 (6), 14–23 (2019).

    Google Scholar 

  10. V. E. Panin, N. S. Surikova, A. V. Panin, et al., “Effect of nanoscale mesoscopic structural states associated with lattice curvature on the mechanical behavior of Fe—Cr–Mn austenitic steel,” Fiz. Mezomekh. 22 (3), 5–14 (2019).

    Google Scholar 

  11. V. E. Panin, V. E. Egorushkin, P. V. Kuznetsov, et al., “Structural turbulence of plastic flow and ductile fracture in low alloy steel under lattice curvature conditions,” Fiz. Mezomekh. 22 (4), 16–28 (2019).

    Google Scholar 

  12. V. E. Panin, V. E. Egorushkin, T. F. Elsukova, et al., “Multiscale translation-rotation plastic flow,” in Polycrystals. Handbook of Mechanics of Materials (Springer Nature Singapore Pte Ltd, Singapore, 2018).

    Google Scholar 

  13. P. V. Kuznetsov, V. E. Panin, and N. K. Gal’chenko, “Hardening mechanism of low-carbon and low-alloy steels with a simultaneous increase in ductility and fracture toughness,” Fiz. Mezomekh. 22 (5), 19–27 (2019).

    Google Scholar 

  14. O. A. Kaibyshev, Plasticity and Superplasticity of Metals (Metallurgia, Moscow, 1975) [in Russian].

    Google Scholar 

  15. M. V. Grabskii, Structural Superplasticity of Metals (Metallurgia, Moscow, 1975) [in Russian].

    Google Scholar 

  16. I. I. Novikov and V. K. Portnoi, Superplasticity of Steels with Ultrafine Grain (Metallurgia, Moscow, 1981) [in Russian].

    Google Scholar 

  17. O. A. Kaibyshev, Superplasticity of Industrial Alloys (Metallurgia, Moscow, 1984) [in Russian].

    Google Scholar 

  18. R. G. Gifkins, “Mechanisms of superplasticity,” in Superplastic Forming of Structural Alloys, Ed. by N. E. Paton and C. H. Hamilton (Warrendale, Pennsylvania: TMS-AIME, 1982), pp. 3–24.

    Google Scholar 

  19. N. S. Surikova, V. E. Panin, L. S. Derevyagina, et al., “Micromechanisms of deformation and fracture in a layered VT6-based material under shock loading,” Fiz. Mezomekh. 17 (5), 39–50 (2014).

    Google Scholar 

  20. A. A. Sarkeeva, A. A. Kruglov, E. M. Borodin, et al., “Behavior of a layered TI-based material under shock loading,” Fiz. Mezomekh. 15 (5), 51–57 (2012).

    Google Scholar 

  21. A. A. Bondar, T. Ya. Velikanova, V. M. Danilenko, et al., Phase Stability and Phase Equilibria in Alloys of Transition Metals (Naukova Dumka, Kiev, 1991) [in Russian].

    Google Scholar 

  22. Tanqkui Zhu and Miaoquan Li, “Lattice variations of Ti–6Al–4V alloy with hydrogen content,” Mater. Charact. 62, 724–729 (2011).

    Article  Google Scholar 

  23. T. V. Pryadko, “Features of hydrogenation of Ti–V al-loys,” Metallofiz. Noveish. Tekhnol. 37, 243–255(2015).

    Article  Google Scholar 

  24. A. M. Mukhamedov, “Deindividuation phenomenon: links between mesodynamics and macroscopic phenomenology of turbulence,” Fiz. Mezomekh. 17 (2), 25–34 (2014).

    Google Scholar 

  25. A. M. Mukhamedov, “Geometrodynamical models of the mesomechanics of a continuum: dynamical degrees of freedom with a non-eulerian space-time evolution,” Fiz. Mezomekh. 21 (4), 13–21 (2018).

    Google Scholar 

  26. A. M. Mukhamedov, “Developed turbulence: new methods for turbulence modeling,” Phys. Mesomech. 22 (3), 181–187 (2019).

    Article  Google Scholar 

  27. V. E. Egorushkin, “Dynamics of plastic deformation. localized inelastic strain waves in solids,” in Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Ed. by V. E. Panin (Int. Sci. Pub., Cambridge, 1998), pp. 41–64.

    Google Scholar 

  28. Y. Matsukawa and S. J. Zinkle, “One-dimensional fast migration of vacancy clusters in metals,” Science 318, 959–962 (2007).

    Article  ADS  Google Scholar 

  29. J. W. Steed and J. L. Atwood, Supramolecular Chemistry (John Wiley & Sons, 2009).

  30. M. A. Guzev and A. A. Dmitriev, “Bifurcational behavior of potential energy in a particle system,” Phys. Mesomech., 16 (4), 287–293 (2013).

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020 (project no. III.23.1.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ye. Panin.

Additional information

Translated by M. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, I.V., Yegorushkin, V.Y., Panin, V.Y. et al. Fractography, Fracture Toughness and Structural Turbulence Under Low-Temperature Shock Loading of a Nonequilibrium Titanium Alloy Ti–6Al–4V. Mech. Solids 55, 633–642 (2020). https://doi.org/10.3103/S0025654420050155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420050155

Keywords:

Navigation