Skip to main content
Log in

Generalization of Hamilton–Ishlinskii Solid Angle Theorem for Spatial Motion of a Solid Body and its Applications

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Using the Kotelnikov–Study transference principle, a generalization of the Hamilton–Ishlinskii solid angle theorem for spatial motion of a solid that is a composition of translational and rotational motions and the dual conjugate theorem for the body motion are presented. An example of the studied spatial motion of a solid is considered. Possible applications of the dual solid angle theorem in the theory of spatial mechanisms and the mechanics of robotic manipulators are pointed out. Its application for the inertial navigation problem for determining the orientation and apparent velocity of a moving object is given. In considering the example and application, biquaternionic kinematic equations and their analytical solutions are used for the solid’s spatial motions under consideration. In the present study, the results obtained earlier by the author of the article are developed and generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Ishlinskii, Mechanics of Special Gyroscopic Systems (Akad. Nauk UkrSSR, Kiev, 1952) [in Russian].

    Google Scholar 

  2. A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. W. R. Hamilton, Lectures on Quaternions (Hodges and Smith, Dublin, 1853).

    Google Scholar 

  4. L. E. Goodman and A. R. Robinson, “Effect of Finite Rotations on Gyroscopic Sensing Devices,” J. Appl. Mech. 25 (2), 210–213 (1958).

    MATH  Google Scholar 

  5. V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  6. Yu. K. Zhbanov and V. Ph. Zhuravlev, “On Certain Properties of the Finite Rotations of a Rigid Body in the Presenceof a Nonholonomic Constraints,” Izv. Akad. Nauk SSSR Mekh. Tv. Tela, No. 1 9–14 (1978).

    Google Scholar 

  7. V. Ph. Zhuravlev, “The Solid Angle Theorem in Rigid Body Dynamics,” Prikl. Mat. Mekh. 60 (2), 323–326 (1996) [J. App. Mat. Mech.(Engl. Transl.) 60 (2), 319–322 (1996)].

    MathSciNet  MATH  Google Scholar 

  8. V. Ph. Zhuravlev, “The Geometry of Conical Rotations,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 3, 11–21 (2004) [Mech. Sol. (Engl. Transl.) 39 (3), 5–13 (2004)].

    Google Scholar 

  9. Yu. N. Chelnokov, “Hamilton–Ishlinskii Solid Angle Theorem and its Generalization for Nonholonomic Spatial Motion of a Solid,” in Mathematics, Mechanics, Collection of Papers, No. 7 (Izd-vo Saratov Univ., Saratov, 2005), pp. 198–202 [in Russian].

    Google Scholar 

  10. Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Mechanics of Solids and Their Applications (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  11. A. P. Kotelnikov, Helical Calculus and Some of Its Applications to Geometry and Mechanics (Kazan, 1895) [in Russian].

  12. A. P. Kotelnikov, “Screws and Complex Numbers,” Izv. Fiz.-Mat. Obshch. Imper. Kazan. Univ. Ser. 2, No. 6, 23–33 (1896).

    Google Scholar 

  13. A. P. Kotelnikov, “Theory of Vectors and Complex Numbers,” in Several Applications of Lobachevskii’s Ideas in Mechanics and Physics, Collection of Papers (Gostekhizdat, Moscow, 1950), pp. 7–47 [in Russian]

    Google Scholar 

  14. E. Study, Über neue Darstellung der Krafte. Berichte über der Verhandlung der Sachs (Akad. Gess. der Wiss., Math. Teil, Leipzig, 1899).

    Google Scholar 

  15. E. Study, Über Nicht-Euklidische und Liniengeometrie (Festschr. der Philoa. Fakult. zu Greifswald, 1900).

  16. F. M. Dimentberg, Theory of Screws and Its Applications (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  17. W. Clifford, “Preliminary Scetch of Biquaternions,” Proc. London Math. Soc. 4, 381–395 (1873).

    Google Scholar 

  18. Yu. N. Chelnokov, “On Integration of Kinematic Equations of a rigid Body’s Screw-Motion,” Prikl. Mat. Mekh. 44 (1), 32–39 (1980) [J. Appl. Math. Mech. (Engl. Transl.) 44 (1), 19–21 (1980)].

    MathSciNet  MATH  Google Scholar 

  19. Yu. N. Chelnokov, “One Form of the Equations of Inertial Navigation,” Izv. Akad. Nauk SSSR Mekh. Tv. Tela, No. 5, 20–28 (1981) [Mech. Sol. (Engl. Transl.) 16 (5), 16–23 (1981)].

    Google Scholar 

  20. Yu. N. Chelnokov, “On Stability of Solutions to Biquaternion Kinematic Equations of Helical Motion of Solids,” in Collection of Sci.-Method. Papers on Theor. Mech. (Vysshaya Shkola, Moscow, 1983), No. 13, pp. 103–109 [in Russian].

    Google Scholar 

  21. Yu. N. Chelnokov, “On Determining Vehicle Orientation in the Rodrigues–Hamilton Parameters from its Angular Velocity,” Izv. Akad. Nauk SSSR Mekh. Tv. Tela, No. 3, 11–20 (1977) [Mech. Sol. (Engl. Transl.) 37 (3), 8–16 (1977)].

    Google Scholar 

  22. V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Attitude Control of a Rigid Body (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  23. Yu. N. Chelnokov, “Equations and Algorithms for Determining the Inertial Attitude and Apparent Velocity of a Moving Object in Quaternion and Biquaternion 4D Orthogonal Operators,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 2, 17–25 (2016) [Mech. Sol. (Engl. Transl.) 51 (2), 148–155 (2016)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Chelnokov.

Additional information

Russian Text © The Autor(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 6, pp. 41–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelnokov, Y.N. Generalization of Hamilton–Ishlinskii Solid Angle Theorem for Spatial Motion of a Solid Body and its Applications. Mech. Solids 54, 1227–1239 (2019). https://doi.org/10.3103/S0025654419080132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419080132

Keywords

Navigation