Skip to main content
Log in

Snap-Through Buckling of Hinged-Hinged Initially Imperfect Beams Undergoing Finite Deflections Subjected to Lateral Concentrated Midpoint Loads

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The buckling and post-buckling behavior of initially imperfect, sinusoidally curved hinged-hinged beams undergoing very large deflections subjected to lateral concentrated loads acting at the midpoints is investigated via the geometrically nonlinear analysis of the problem. The transverse shear deformation is neglected. The amplitudes of the imperfection are considered to be relatively small. Therefore, the concerning curved beams (or arches) are shallow. The values of the extensional rigidity/length of the beams are assumed to be large enough not to permit considerable amount of change in the lengths of the beams during the deformation. The force-deflection curves corresponding to various amplitudes of the imperfection and the diagrams of the deflections and internal forces corresponding to various stages of the deformation, including those after the buckling, are presented. Not being able to solve the highly nonlinear problem analytically, numerical methods are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Qiu, J.H. Lang, and A.H. Slocum, “A Curved-Beam Bistable Mechanism,” J. Micr. Sys. 13(2), 137–146 (2004).

    Article  Google Scholar 

  2. K. Das and R. C. Batra, “Symmetry Breaking, Snap-Through and Pull-In Instabilities under Dynamic Loading of Microelectromechanical Shallow Arches,” Smart Mat. Struct. 18, 115008 (2009).

    Article  ADS  Google Scholar 

  3. Y. Gerson, S. Kjylov, and B. Ilic, “Electrothermal Bistability Tuning in a Large Displacement Micro Actuator,” J. Micromech. Microengng 20 (11), 112001 (2010).

    Article  ADS  Google Scholar 

  4. J. Beharic, T. M. Lucas, and C. K. Harnett, “Analysis of a Compressed Bistable Buckled Beam on a Flexible Support,” ASME J. Appl. Mech. 81 (8), 081011 (2014).

    Article  ADS  Google Scholar 

  5. L. Medina, R. Gilat, B. Ilic, and S. Krylov, “Experimental Investigation of the Snap-Through Buckling of Electrostatically Actuated Initially Curved Pre-Stressed Micro Beams,” Sens. Act. A: Physical 220, 323–332 (2014).

    Article  Google Scholar 

  6. J. Zhao, J. Jia, X. He, and H. Wang, “Post-Buckling and Snap-Through Behavior of Inclined Slender Beams,” ASME J. Appl. Mech. 75(4), 041020 (2008).

    Article  ADS  Google Scholar 

  7. A. K. Lyubimov, O. A. Sergeyev, V. G. Kiselev, and S. A. Sergeyeva, “Optimization of Bar Structures with Random Imperfections with Stability Constraints,” Prob. Str. Plast. 74, 134–145 (2012).

    Google Scholar 

  8. G. A. Hrinda, “Snap-Through Instability Patterns in Truss Structures,” in 51 st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, 2010, Vol.2, pp. 1313–1324.

    Google Scholar 

  9. R. H. Plaut, “Snap-Through of Shallow Elastic Arches under End Moments,” ASME J. Appl. Mech. 76(1), 014504 (2009).

    Article  ADS  Google Scholar 

  10. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

    Google Scholar 

  11. Y. C. Fung and A. Kaplan, “Buckling of Low Arches or Curved Beams of Small Curvature,” NACA Technical Note 2840 (1952).

    Google Scholar 

  12. J. S. Chen, W. C. Ro, and J. S. Lin, “Exact Static and Dynamic Critical Loads of a Sinusoidal Arch under a Point Force at the Midpoint,” Int. J. Nonlin. Mech. 44 (1), 66–70 (2009).

    Article  Google Scholar 

  13. Y. Chandra, I. Stanciulescu, L. N. Virgin, T. G. Eason, et al., “A Numerical Investigation of Snap-Through in a Shallow Arch-Like Model,” J. Sound Vib. 332(10), 2532–2548 (2013).

    Article  ADS  Google Scholar 

  14. J. Moon, K. Y. Yoon, T. H. Lee, and H. E. Lee, “In-plane Elastic Buckling of Pin-Ended Shallow Parabolic Arches,” Engng Struct. 29(10), 2611–2617 (2007).

    Article  Google Scholar 

  15. A. A. Atai, M. Panahiazar, and R. Eghtefari, “Limit Load Analysis of a Spring-Supported Shallow Arch of Variable Thickness Given by a Power-Law, Exponential, or Logarithmic Formula,” Mech. Sol. 50(6), 676–686 (2015).

    Article  Google Scholar 

  16. R. H. Plaut, “Influence of Load Position on the Stability of Shallow Arches,” J. Appl. Math. Phys. (ZAMP) 30(3), 548–552 (1979).

    Article  Google Scholar 

  17. M. A. Bradford, B. Uy, and Y. L. Pi, “In-Plane Elastic Stability of Arches under a Central Concentrated Load,” J. Engng Mech.-ASCE 128(7), 710–719 (2002).

    Article  Google Scholar 

  18. Y. L. Pi, M. A. Bradford, and B. Uy, “In-Plane Stability of Arches,” Int. J. Sol. Struct. 39(1), 105–125 (2002).

    Article  Google Scholar 

  19. Y. L. Pi and N. S. Trahair, “Non-Linear Buckling and Postbucklingof Elastic Arches,” Engng Struct. 20(7), 571–579 (1998).

    Article  Google Scholar 

  20. C. A. Dimopoulos and C. J. Gantes, “Nonlinear In-Plane Behavior of Circular Steel Arches with Hollow Circular Cross-Section,” J. Const. Steel Res. 64(12), 1436–1445 (2008).

    Article  Google Scholar 

  21. D. A. Da Deppo and R. Schmidt, “Large Deflections and Stability of Hingeless Circular Arches under Interacting Loads,” J. Appl. Mech. 41 (4), 989–994 (1974).

    Article  ADS  Google Scholar 

  22. D.A. Da Deppo and R. Schmidt, “Nonlinear Analysis of Buckling and Postbuckling Behavior of Circular Arches,” Zeit. Ang. Math. Phys. (ZAMP) 20 (6), 847–857 (1969).

    Article  Google Scholar 

  23. I. H. Rapp, “Snap-Through Buckling of Shallow Arches with Nonuniform Stiffness under Dynamic and Quasi-Static Loadings,” Thesis, Georgia Institute of Technology (1974).

    Google Scholar 

  24. J. H. Mathews, Numerical Methods for Mathematics, Science and Engineering (Prentice-Hall Int. Inc., USA, 1992).

    MATH  Google Scholar 

  25. M. J. Maron and R. J. Lopez, Numerical Analysis: A Practical Approach (Wadsworth Publishing Company, Belmont, 1991).

    MATH  Google Scholar 

  26. M. Altekin and R. F. Yükseler, “A Parametric Study on Geometrically Nonlinear Analysis of Initially Imperfect Shallow Spherical Shells,” J. Elast. Plast. 40(1), 253–270 (2008).

    Article  Google Scholar 

  27. B. Yildirim and R. F. Yükseler, “Effect of Compressibility on Nonlinear Buckling of Simply Supported Polyurethane Spherical Shells Subjected to an Apical Load,” J. Elast. Plast. 43(2), 167–187 (2011).

    Article  Google Scholar 

  28. A. Pflüger, Stabilitats Probleme der Elastostatic (Springer Verlag, Berlin, 1964).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tekin Atacan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin Atacan, A., Yükseler, R.F. Snap-Through Buckling of Hinged-Hinged Initially Imperfect Beams Undergoing Finite Deflections Subjected to Lateral Concentrated Midpoint Loads. Mech. Solids 54, 1119–1130 (2019). https://doi.org/10.3103/S0025654419070136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419070136

Keywords

Navigation