Skip to main content

Pochhammer-Cree Longitudinal Waves: Anomalous Polarization


The exact solutions of the Pochhammer-Cree wave equation, which describes the propagation of harmonic waves in an elastic cylindrical rod, are analyzed. For longitudinal axially symmetric modes, a spectral analysis of the matrix of the dispersion equation is carried out for the first time. Analytical expressions for wave polarization are obtained. On the surface of the rod for the fundamental longitudinal axially symmetric mode, the polarization coefficients of the corresponding waves are determined and the variation of these coefficients depending on the frequency is analyzed. It was found that at the phase velocity of the fundamental axially symmetric longitudinal mode, which coincides with the shear wave velocity, all components of displacements on the side surface of the rod simultaneously vanish, which seems to be extremely important for the design of acoustic waveguides.

This is a preview of subscription content, access via your institution.


  1. L. Pochhammer, “Uber die Fortpflanzungsgeschwindigkeiten Kleiner Schwingungen in Einem Unbegrenzten Isotropen Kreiscylinder,” J. Reine Angew. Math. 81, 324–336 (1876).

    MathSciNet  MATH  Google Scholar 

  2. C. Chree, “Longitudinal Vibrations of a Circular Bar,” Quart. J. Pure Appl. Math. 21, 287–298 (1886).

    MATH  Google Scholar 

  3. C. Chree, “The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications,” Trans. Cambridge Philos. Soc. 14, 250–309 (1889).

    ADS  Google Scholar 

  4. G. S. Field, “Velocity of Sound in Cylindrical Rods,” Can. J. Res. 5, 619–624 (1931).

    Article  Google Scholar 

  5. G. S. Field, “Longitudinal Waves in Cylinders of Liquid, in Hollow Tubes and in Solid Rods,” Can. J. Res. 11, 254–263 (1934).

    Article  Google Scholar 

  6. G. S. Field, “Dispersion of Supersonic Waves in Cylindrical Rods” Phys. Rev. 57, 1188 (1940).

    Article  ADS  Google Scholar 

  7. S. K. Shear and A. B. Focke, “The Dispersion of Supersonic Waves in Cylindrical Rods of Polycrystalline Silver, Nickel, and Magnesium,” Phys. Rev. 57, 532–537 (1940).

    Article  ADS  Google Scholar 

  8. D. Bancroft, “The Velocity of Longitudinal Waves in Cylindrical Bars,” Phys. Rev. 59, 588–593 (1941).

    Article  ADS  Google Scholar 

  9. G. E. Hudson, “Dispersion of Elastic Waves in Solid Circular Cylinders,” Phys. Rev. 63, 46–51 (1943).

    Article  ADS  Google Scholar 

  10. A. H. Holden, “Longitudinal Modes of Elastic Waves in Isotropic Cylinders and Slabs,” Bell Sys.Tech. J. 30, 956–969 (1951).

    Article  MathSciNet  Google Scholar 

  11. J. Adem, “On the axially-symmetric steady wave propagation in elastic circular rods,” Quart. Appl. Math. 12, 261–275 (1954).

    Article  MathSciNet  Google Scholar 

  12. M. Redwood and J. Lamb, “On Propagation of High Frequency Compressional Waves in Isotropic Cylinders,” Proc. Phys. Soc. London. 70, 136–143 (1957).

    Article  ADS  Google Scholar 

  13. R. D. Mindlinand H. D. McNiven, “Axially Symmetric Waves in Elastic Rods,” Trans. ASME. J. Appl. Mech. 27, 145–151 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. D. McNiven and D. C. Perry, “Axially Symmetric Waves in Infinite, Elastic Rods,” J. Acoust. Soc. Amer. 34, 433–437 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Onoe, H. D. McNiven, and R. D. Mindlin, “Dispersion of Axially Symmetric Waves in Elastic Rods,” Trans. ASME. J. Appl. Mech. 29, 729–734 (1962).

    Article  ADS  Google Scholar 

  16. T. R. Meeker and A. H. Meitzler, “Guided wave propagation in elongated cylinders and plates,” in Physical acoustics. Principles and methods (Acad. Press., New York 1964). Vol. 1A, pp. 111–167.

    Article  MathSciNet  Google Scholar 

  17. H. Kolsky, “Stress Waves in Solids,” J. Sound Vibr. 1, 88–110 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. R. Hutchinson and C. M. Percival, “Higher Modes of Longitudinal Wave Propagation in thin Rod,” J. Acoust. Soc. Amer. 44, 1204–1210 (1968).

    Article  ADS  Google Scholar 

  19. J. Zemanek, “An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder,” J. Acoust. Soc. Amer. 5, 265–283 (1972).

    Article  ADS  Google Scholar 

  20. R. N. Thurston, “Elastic Waves in Rods and Clad Rods,” J. Acoust. Soc. Amer. 64, 1–37 (1978).

    Article  ADS  Google Scholar 

  21. Y.-H. Pao and R. D. Mindlin, “Dispersion of Flexural Waves in an Elastic, Circular Cylinder,” Trans. ASME. J. Appl. Mech. 27, 513–520 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Valsamos, F. Casadei, and G. Solomos, “A Numerical Study of Wave Dispersion Curves in Cylindrical Rods with Circular Cross-Section,” Appl. Comp. Mech. 7, 99–114 (2013).

    Google Scholar 

  23. O. V. Murav'eva, S. V. Lenkov, and S. A. Murashov, “Torsional Waves Excited by Electromagnetic-Acoustic Transducers During Guided-Wave Acoustic Inspection of Pipelines,” Acoust. Phys. 62 (1), 117–124 (2016).

    Article  ADS  Google Scholar 

  24. S. V. Kuznetsov, “Lamb Waves in Anisotropic Plates,” Ac. Phys. 60 (1), 95–103 (2014).

    Google Scholar 

  25. A. K. Abramyan, D. A. Indeitsev and V. A. Postnov, “Running and Standing Waves of Timoshenko Beam,” Izv. Ros. Akad. NaukMekh. Tv. Tela, No. 2, (2018) [Mech. Sol. (Engl. Trans.) 53 (2), 203–210 (2018).

    Google Scholar 

Download references


The author thanks the Russian Foundation for Basic Research (Grants No. 17-08-00311 and No. 18-58-41001 Uzb_t) for partial financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Ilyashenko.

Additional information

Russian Text © Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 3, pp. 136–146.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyashenko, A.V. Pochhammer-Cree Longitudinal Waves: Anomalous Polarization. Mech. Solids 54, 598–606 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: