Skip to main content
Log in

Optimal Control of a Spacecraft Orientation Taking into Account the Energy of Rotation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The problem of optimal control of the reorientation of a spacecraft as a solid body from an arbitrary initial position into a prescribed final angular position is considered and solved. The construction of an optimal slew control is based on the quaternionic variables and Pontryagin’s maximum principle. The case is investigated when the minimized functional combines, in a given proportion, the integral of the kinetic energy of rotation and the duration of the maneuver. On the basis of necessary optimality conditions, the main properties, laws, and key characteristics (parameters, constants, integrals of motion) of the optimal solution of the control problem, including the maximum kinetic energy for the optimal motion and the turn time, are determined. It is proved that during the optimal rotation, the direction of the kinetic moment is constant in the inertial coordinate system. Formalized equations and expressions for the synthesis of the optimal rotation program are obtained. The optimal solution corresponds to the strategy “acceleration–rotation by inertia–braking”. An assessment is made of the influence of the limiting control moment on the character of the optimal motion and on the quality control indicators. It is shown that the accepted optimality criterion guarantees the motion of a spacecraft with a kinetic rotational energy not exceeding the required value. For dynamically symmetric spacecraft, a complete solution of the reorientation problem in closed form is presented. An example and results of mathematical modeling of the motion of a spacecraft with optimal control are given, demonstrating the practical feasibility of the method for controlling spacecraft spatial orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Branets, V.N. and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Quaternions Application for Problems on Orientation of Rigid Body), Moscow: Nauka, 1973.

    MATH  Google Scholar 

  2. Alekseev, K.B. and Bebenin, G.G., Upravlenie kosmicheskimi letatel’nymi apparatami (Control for Spacecrafts), Moscow: Mashinostroenie, 1974.

    Google Scholar 

  3. Branets, V.N., Chertok, M.B., and Kaznacheev, Yu.V., Optimal turn of rigid body with one axis of symmetry, Kosm. Issled., 1984, vol. 22, no. 3, pp. 352–360.

    Google Scholar 

  4. Li, F. and Bainum, P.M., Numerical approach for solving rigid spacecraft minimum time attitude maneuvers, J. Guid., Control, Dyn., 1990, vol. 13, no. 1, pp. 38–45.

    Article  ADS  MathSciNet  Google Scholar 

  5. Scrivener, S. and Thompson, R., Survey of time-optimal attitude maneuvers, J. Guid., Control, Dyn., 1994, vol. 17, no. 2, pp. 225–233.

    Article  ADS  Google Scholar 

  6. Chelnokov, Yu.N., Attitude control for spacecraft using quaternions, Kosm. Issled., 1994, vol. 32, no. 3, pp. 21–32.

    Google Scholar 

  7. Chelnokov, Yu.N., Quaternion synthesis for nonlinear attitude control of moving object, Izv. Akad. Nauk, Teor. Sist. Upr., 1995, no. 2, pp. 145–150.

    Google Scholar 

  8. Liu, S. and Singh, T., Fuel/time optimal control of spacecraft maneuvers, J. Guid., 1996, vol. 20, no. 2, pp. 394–397.

    Article  MATH  Google Scholar 

  9. Shen, H. and Tsiotras, P., Time-optimal control of axi-symmetric rigid spacecraft with two controls, J. Guid., Control, Dyn., 1999, vol. 22, no. 5, pp. 682–694.

    Article  ADS  Google Scholar 

  10. Ermoshina, O.V. and Krishchenko, A.P., Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics, J. Comput. Syst. Sci. Int., 2000, vol. 39, no. 2, pp. 313–320.

    Google Scholar 

  11. Velishchanskii, M.A., Krishchenko, A.P., and Tkachev, S.B., Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem, J. Comput. Syst. Sci. Int., 2003, vol. 42, no. 5, pp. 811–818.

    MATH  Google Scholar 

  12. Malanin, V.V. and Strelkova, N.A., Optimal’noe upravlenie orientatsiei i vintovym dvizheniem tverdogo tela (Optimal Control for Orientation and Helicoidal Motion of Rigid Body), Moscow, Izhevsk: Regulyarnaya i Haoticheskaya Dinamika, 2004.

    Google Scholar 

  13. Molodenkov, A.V. and Sapunkov. Ya.G., A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions, J. Comput. Syst. Sci. Int., 2007, vol. 46, no. 2, pp. 310–323.

    Article  MATH  Google Scholar 

  14. Levskii, M.V., Control of a spacecraft’s spatial turn with minimum value of the path functional, Cosmic Res., 2007, vol. 45, no. 3, pp. 234–247.

    Article  ADS  Google Scholar 

  15. Levskii, M.V., Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft, J. Comput. Syst. Sci. Int., 2008, vol. 47, no. 6, pp. 974–986.

    Article  MathSciNet  MATH  Google Scholar 

  16. Molodenkov, A.V. and Sapunkov, Ya.G., Special control regime in the problem of optimal turn of an axially symmetric spacecraft, J. Comput. Syst. Sci. Int., 2010, vol. 49, no. 6, pp. 891–899.

    Article  MathSciNet  MATH  Google Scholar 

  17. Levskii, M.V., On optimal spacecraft damping, J. Comput. Syst. Sci. Int., 2011, vol. 50. no. 1, pp. 144–157.

    Article  MathSciNet  MATH  Google Scholar 

  18. Biryukov, V.G. and Chelnokov, Yu.N., Construction of optimal laws of variation of the angular momentum vector of a rigid body, Mech. Solids (Engl. Transl.), 2014, vol. 49, no. 5, pp. 479–494.

    Article  ADS  Google Scholar 

  19. Molodenkov, A.V. and Sapunkov, Ya.G., Analytical approximate solution of the problem of a spacecraft’s optimal turn with arbitrary boundary conditions, J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 3, pp. 458–468.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chelnokov, Yu.N., Theory of kinematic control of rigid body motion, Mekhatronika, Avtom., Upr., 2017, vol. 18, no. 7, pp. 435–446.

    Article  Google Scholar 

  21. Chelnokov, Yu.N., Applications for theory of kinematic control of rigid body motion, Mekhatronika, Avtom., Upr., 2017, vol. 18, no. 8, pp. 532–542.

    Article  Google Scholar 

  22. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  23. Young, L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Philadelphia, PA: Saunders, 1969.

    MATH  Google Scholar 

  24. Markeev, A.P., Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  25. Bertolazzi, E., Biral, F., and Da Lio, M., Symbolic-numeric efficient solution of optimal control problems for multibody systems, J. Comput. Appl. Math., 2006, vol. 185, no. 2, pp. 404–421.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kumar, S., Kanwar, V., and Singh, S., Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations, J. Appl. Math., 2010, vol. 1, no. 3, pp. 153–158.

    Article  Google Scholar 

  27. Levskii, M.V., RF Patent 2114771, Byull. Izobret., 1998, no. 19.

  28. Levskii, M.V., RF Patent 2006431, Byull. Izobret., 1994, no. 2.

  29. Levskii, M.V., RF Patent 2146638, Byull. Izobret., 2000, no. 8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Levskii.

Additional information

Russian Text © The Author(s), 2018, published in Prikladnaya Matematika i Mekhanika, 2018, Vol. 82, No. 6, pp. 690–705.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levskii, M.V. Optimal Control of a Spacecraft Orientation Taking into Account the Energy of Rotation. Mech. Solids 54, 144–156 (2019). https://doi.org/10.3103/S0025654419030166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419030166

Keywords

Navigation