Skip to main content
Log in

Inertial Navigation in Space Using the Regular Quaternion Equations of Astrodynamics

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Quaternion equations are proposed for the ideal operation of spatial inertial navigation systems with an azimuthally stabilized platform and a gyrostabilized platform that keeps its orientation invariant in inertial space, quaternion equations for the ideal operation of strapdown inertial navigation systems in the regular four-dimensional Kustaanheimo-Stiefel variables with consideration of zonal, tesseral, and sectorial harmonics of the Earth's gravitational field. The equations are dynamically similar to the regular equations of perturbed spatial two-body problem in the Kustaanheimo-Stiefel variables, which enables to use the results obtained in regular celestial mechanics and astrodynamics theory in inertial astronavigation. The development of operational algorithms for these navigation systems using these equations is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chelnokov, Yu.N., Quaternionic algorithms for three-dimensional inertial navigation systems, Mech. Solids, 1983, vol. 18, no. 6, pp. 1–8.

    MathSciNet  Google Scholar 

  2. Chelnokov, Yu.N., Kvaternionnye modeli i metody dinamiki, navigatsii i upravleniya dvizheniem (Quaternion Models and Methods of Dynamic, Navigation, and Control of Motion), Moscow: Fizmatlit, 2011.

    Google Scholar 

  3. Stiefel, E.L. and Scheifele, G., Linear and Regular Celestial Mechanics, Berlin: Springer, 1971.

    Book  MATH  Google Scholar 

  4. Bordovitsyna, T.V., Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki (Modern Numerical Methods for Problems on Celestial Mechanics), Moscow: Nauka, 1984.

    MATH  Google Scholar 

  5. Bordovitsyna, T.V. and Avdyushev, V.A., Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody (Theory of Artificial Earth Satellites Motion. Analytical and Numerical Methods), Tomsk: Tomsk State Univ., 2007.

    Google Scholar 

  6. Chelnokov, Yu.N., On regularization of the equations of the three-dimensional two body problem, Mech. Solids, 1981, vol. 16, no. 6, pp. 1–10.

    Google Scholar 

  7. Chelnokov, Yu.N., Regular equations of the three-dimensional two body problem, Mech. Solids, 1984, vol. 19, no. 1, pp. 1–7.

    Google Scholar 

  8. Chelnokov, Yu.N., Quaternion regularization of the equations of the perturbed spatial restricted three-body problem: I, Mech. Solids (Engl. Transl.), 2017, vol. 52, no. 6, pp. 613–639.

    Article  ADS  Google Scholar 

  9. Chelnokov, Yu.N., Quaternion regularization and stabilization of perturbed central motion. I, Mech. Solids, 1993, vol. 28, no. 1, pp. 16–25.

    Google Scholar 

  10. Chelnokov, Yu.N., Quaternion regularization and stabilization of perturbed central motion. II, Mech. Solids, 1993, vol. 28, no. 2, pp. 1–12.

    Google Scholar 

  11. Chelnokov, Yu.N., Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. I, Cosmic Res., 2013, vol. 51, no. 5, pp. 350–361.

    MathSciNet  Google Scholar 

  12. Chelnokov, Yu.N., Quaternion regularization and trajectory motion control in celestial mechanics and astrodynamics: II, Cosmic Res., 2014, vol. 52, no. 4, pp. 304–317.

    Google Scholar 

  13. Chelnokov, Yu.N., Application of quaternions in the theory of orbital motion of an artificial satellite. I, Cosmic Res., 1992, vol. 30, no. 6, pp. 612–621.

    Google Scholar 

  14. Chelnokov, Yu.N., Application of quaternions in the theory of orbital motion of an artificial satellite. II, Cosmic Res., 1993, vol. 31, no. 3, pp. 409–418.

    Google Scholar 

  15. Sapunkov, Ya.G. and Chelnokov, Yu.N., Design of optimal control strategies and trajectories of a spacecraft with the regular quaternion equations of the two-body problem, Cosmic Res., 1996, vol. 34, no. 2, pp. 137–145.

    Google Scholar 

  16. Chelnokov, Yu.N. and Yurko, V.A., Quaternion construction of optimum managements and trajectories of movement of a space vehicle in the newtonian gravitational field, Mech. Solids, 1996, vol. 33, no. 6, pp. 1–12.

    Google Scholar 

  17. Chelnokov, Yu.N., Analysis of optimal motion control for a material point in a central field with application of quaternions, J. Comput. Syst. Sci. Int., 2007, vol. 46, no. 5, pp. 688–713.

    MathSciNet  Google Scholar 

  18. Sapunkov, Ya.G. and Chelnokov, Yu.N., Construction of optimum controls and trajectories of motion of the center of masses of a spacecraft equipped with the solar sail and low-thrust engine, using quaternions and Kusta-anheimo-Stiefel variables, Cosmic Res., 2014, vol. 52, no. 6, pp. 450–460.

    Google Scholar 

  19. Chelnokov, Yu.N., Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III, Cosmic Res., 2015, vol. 53, no. 5, pp. 394–409.

    Google Scholar 

  20. Andreev, V.D., Teoriya inertsial'noi navigatsii. Avtonomnye sistemy (Theory of Inertial Navigation. Autonomous Systems), Moscow: Nauka, 1966.

    Google Scholar 

  21. Zakharin, M.I. and Zakharin, F.M., Kinematika inertsial'nykh sistem navigatsii (Kinematics of Inertial Navigation Systems), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  22. Ishlinskii, A.Yu., Orientatsiya, giroskopy i inertsial'naya navigatsiya (Orientation, Gyroscopes, and Inertial Navigation), Moscow: Nauka, 1976.

    Google Scholar 

  23. Bromberg, P.V., Teoriya inertsial'nykh sistem navigatsii (Theory of Inertial Navigation Systems), Moscow: Nauka, 1979.

    Google Scholar 

  24. Onishchenko, S.M., Prtmenenie giperkompleksnykh chisel v teorii inertsial'noi navigatsii. Avtonomnye sistemy (Application of Hypercomplex Numbers for Theory of Inertial Navigation. Autonomous Systems), Kiev: Nau-kova Dumka, 1983.

    MATH  Google Scholar 

  25. Klimov, D.M., Inertsial'naya navigatsiya na more (Inertial Navigation at Sea), Moscow: Nauka, 1984.

    Google Scholar 

  26. Branets, V.N. and Shmyglevskii, I.P., Vvedenie v teoriyu besplatformennykh inertsial'nykh navigatsionnykh sistem (Introduction into Theory of Strap Down Inertial Navigation Systems), Moscow: Nauka, 1992.

    Google Scholar 

  27. Anuchin, O.N. and Emel'yantsev, G.I., Besplatformennye inertsial'nye sistemy navigatsii i orientatsii (BINS i BISO) (Strap Down Inertial Systems of Navigation and Orientation), St. Petersburg: St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 1995.

    Google Scholar 

  28. Chelnokov, Yu.N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya. Geometriya i kinematika dvizheniya (Quaternion and Biquaternion Models and Methods of Mechanics of Solids and their Applications. Geometry and Kinematic of Motion), Moscow: Fizmatlit, 2006.

    Google Scholar 

  29. Branets, V.N., lektsiipo teorii besplatformennykh inertsial'nykh navigatsionnykh sistem upravleniya (Lectures on Theory of Strap Down Inertial Navigation Systems of Control), Moscow: Moscow Institute of Physics and Technology, 2009.

    Google Scholar 

  30. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial'nykh navigatsionnykh sistem (Fundamentals for Generating Strap Down Inertial Navigation Systems), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2009.

    Google Scholar 

  31. Chelnokov, Yu.N., Inertial navigation equations for the apparent and gravitational velocities and their analytic solutions for an immovable object, Mech. Solids (Engl. Transl), 2016, vol. 51, no. 1, pp. 1–11.

    ADS  MathSciNet  Google Scholar 

  32. Chelnokov, Yu.N., Equations and algorithms for determining the inertial attitude and apparent velocity of a moving object in quaternion and biquaternion 4D orthogonal operators, Mech. Solids (Engl. Transl), 2016, vol. 51, no. 2, pp. 148–155.

    Google Scholar 

  33. Chelnokov, Yu.N., Kinematic equations of a rigid body in four-dimensional skew-symmetric operators and their application in inertial navigation, /. Appl. Math. Mech. (Engl. Transl), 2016, vol. 80, no. 6, pp. 449–458.

    MathSciNet  Google Scholar 

  34. Perelyaev, C.E. and Chelnokov, Yu.N., Algorithms for the orientation of a moving object with separation of the integration of fast and slow motions, /. Appl. Math. Mech. (Engl. Transl), 2017, vol. 81, no. 1, pp. 11–20.

    Google Scholar 

  35. Kustaanheimo, P., Spinor regularization of the Kepler motion, Ann. Univ. Turku., 1964, vol. 73, pp. 3–7.

    Google Scholar 

  36. Kustaanheimo, P. and Stiefel, E., Perturbation theory of Kepler motion based on spinor regularization, /. Reine Angew. Math., 1965, vol. 218, pp. 204–219.

    Google Scholar 

  37. Brumberg, V.A., Analiticheskie algoritmy nebesnoi mekhaniki (Analytical Algorithms for Celestial Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  38. Chelnokov, Yu.N., The perturbed spatial two-body problem: the regular quaternion equations of relative mo-tion,Mech. Solids, 2019, vol. 54, suppl. 2, pp. S39–S48.

    Google Scholar 

  39. Ishlinskii, A.Yu., Equations for problem on determining moving object location with the help of gyroscopes and acceleration-measuring devices, Prikl. Mat. Mekh.,1957, vol. 21, no. 6, pp. 725–739.

  40. Abalakin, V.K., Aksenov, E.P., Grebenikov, E.A., Demin, V.G., and Ryabov, Yu.A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (Handbook on Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1976.

    Google Scholar 

  41. Duboshin, G.N., Nebesnaya mekhanika: Metody teorii dvizheniya iskusstvennykh nebesnykh tel (Celestial Mechanics: Methods for Theory of Artificial Celestial Bodies), Moscow: Nauka, 1983.

    Google Scholar 

  42. Demin, V.G., Dvizhenie iskusstvennogo sputnika v netsentral'nom pole tyagoteniya (Motion of Artificial Satellite in Noncentral Gravitational Field), Moscow, Izhevsk: Regulyarnaya i Haoticheskaya Dinamika, Institut Komp'uternykh Issledovanii, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Chelnokov.

Additional information

Russian Text © The Author(s), 2018, published in Prikladnaya Matematika i Mekhanika, 2018, Vol. 82, No. 6, pp. 706–720.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelnokov, Y.N. Inertial Navigation in Space Using the Regular Quaternion Equations of Astrodynamics. Mech. Solids 54, 157–168 (2019). https://doi.org/10.3103/S0025654419030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419030063

Keywords

Navigation