Mechanics of Solids

, Volume 52, Issue 4, pp 457–464 | Cite as

Influence of the powder mixture composition on the deposition coefficient and the properties of NI+B4C CGDS coatings

  • V. F. Kosarev
  • A. A. Polukhin
  • N. S. Ryashin
  • V. M. Fomin
  • V. S. Shikalov


The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.


cold gas dynamics spray mechanical mixtures composite functional coatings cermet 3D profilometry microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Papyrin, V. Kosarev, S. Klinkov, et al., Cold Spray Technology (Elsevier Science, Amsterdam, 2007).Google Scholar
  2. 2.
    A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, and V. M. Fomin, Cold Gas Dynamic Spray. Theory and Practice (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  3. 3.
    A. Moridi, S. M. Hassani-Gangaraj, M. Guagliano, and M. Dao, “Cold Spray Coating: Review of Material Systems and Future Perspectives,” Surf. Engng 36 (6), 369–395 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, “Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying,” J. Therm. Spray Technol. 15 (3), 382–385 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sova, A. Papyrin, and I. Smurov, “Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray,” J. Thermal Spray Technol. 18 (4), 633–641 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    K. Spencer, D. M. Fabijanic, and M.-X. Zhang, “The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties ofMagnesium Alloys,” Surf. Coat. Technol. 204, 336–344 (2009).CrossRefGoogle Scholar
  7. 7.
    Q. Wang, K. Spencer, N. Birbilis, and M.-X. Zhang, “The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate,” Surf. Coat. Technol. 205, 50–56 (2010).CrossRefGoogle Scholar
  8. 8.
    E. Irissou, J.-G. Legoux, B. Arsenault, and Ch. Moreaus, “Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties,” J. Thermal Spray Technol. 16 (5–6), 661–668 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    K. Spencer, D. M. Fabijanic, and M.-X. Zhang, “The Influence of Al2O3 Reinforcement on the Properties of Stainless Steel Cold Spray Coatings,” Surf. Coat. Technol. 206, 3275–3282 (2012).CrossRefGoogle Scholar
  10. 10.
    X. K. Suo, Q. L. Suo, W. Y. Li, et al., “Effects of SiC Volume Fraction and Particle Size on the Deposition Behavior and Mechanical Properties of Cold-Sprayed AZ91D/SiC Composite Coating,” J. Thermal Spray Technol. 23 (1–2), 91–97 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    H. Bu, M. Yandouzi, Ch. Lu, et al., “Cold Spray Blended Al+Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium Alloy,” Surf. Coat. Technol. 207, 155–162 (2012).CrossRefGoogle Scholar
  12. 12.
    S. V. Klinkov and V. F. Kosarev, “Cold Spraying Activation Using an Abrasive Admixture,” J. Thermal Spray Technol. 20 (4), 837–844 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    Ha Yong Lee, Se Hun Jung, Soo Yong Lee, et al, “Correlation between Al2O3 Particles and Interface Al-Al2O3 Coatings by Cold Spray,” Appl. Surf. Sci. 252, 1891–1898 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    D. Lioma, N. Sacks, and I. Botef, “Cold Gas Dynamic Spraying of WC–Ni Cemented Carbide Coatings,” Int. J. Refractory Metals Hard Mater. 49, 365–373 (2015).CrossRefGoogle Scholar
  15. 15.
    S. V. Klinkov, V. F. Kosarev, A. A. Sova, and I. Smurov, “Calculation of Particle Parameters for Cold Spraying of Metal-CeramicMixtures,” J. Thermal Spray Technol. 18 (5), 944–956 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Yandouzi, A. J. Böttger, R. W. A. Hendrikx, et al., “Microstructure and Mechanical Properties of B4C Reinforced Al-Based Matrix Composite Coatings Deposited by CGDS and PGDS Processes,” Surf. Coat. Technol. 205, 2234–2246 (2010).CrossRefGoogle Scholar
  17. 17.
    C. Feng, V. Guipont, M. Jeandin, et al., “B4C/Ni Composite Coatings Prepared by Cold Spray of Blended or CVD-Coated Powders,” J. Thermal Spray Technol. 21 (3–4), 561–570 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. F. Kosarev
    • 1
  • A. A. Polukhin
    • 1
  • N. S. Ryashin
    • 1
  • V. M. Fomin
    • 1
  • V. S. Shikalov
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations