Advertisement

Mechanics of Solids

, Volume 52, Issue 4, pp 444–451 | Cite as

Axisymmetric contact between an annular rough punch and a surface nonuniform foundation

  • K. E. Kazakov
  • A. V. Manzhirov
Article

Abstract

The axisymmetric contact problem of interaction between a two-layer foundation and a rigid annular punch is considered under the assumption that the surface nonuniformity of the upper layer and the shape of the punch base are described by rapidly varying functions. The integral equation of the problem containing two rapidly varying functions is derived, and two versions of the problem are considered. Their solutions were first constructed by the generalized projection method. As an illustration, the model problem is analyzed numerically to demonstrate the high efficiency of the method.

Keywords

contact problem rapidly varying functions integral equation projection method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Alexandrov and S. M. Mkhitaryan, Contact Problems for Bodies with Thin Covers and Interlayers (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    A. V. Manzhirov, “Axisymmetric Contact Problems for Non-Uniformly Aging Layered Viscoelastic Foundations,” Prikl. Mat. Mekh. 47 (4), 684–693 (1983) [J. Appl. Math. Mech. (Engl. Transl.) 47 (4), 558–566 (1983)].MATHGoogle Scholar
  3. 3.
    V. M. Alexandrov, “Contact Problems on Soft and Rigid Coatings of an Elastic Half-Plane,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 42–50 (2010) [Mech. Solids (Engl. Transl.) 45 (1), 34–40 (2010)].Google Scholar
  4. 4.
    N. F. Morozov and P. E. Tovstik, “BucklingModes of a CompressedPlate on an Elastic Substrate,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 30–36 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 622–627 (2012)].Google Scholar
  5. 5.
    A. V. Manzhirov, “On a Method of Solving Two-Dimensional Integral Equations of Axisymmetric Contact Problems for Bodies with Complex Rheology,” Prikl. Mat. Mekh. 49 (6), 1019–1025 (1985) [J. Appl.Math. Mech. (Engl. Transl.) 49 (6), 777–782 (1985)].MathSciNetMATHGoogle Scholar
  6. 6.
    K. E. Kazakov, “Contact Problems for Coated Bodies,” Vestnik SamGU. Estestvennonauch. Ser., No. 4, 176–196 (2007).MATHGoogle Scholar
  7. 7.
    K. E. Kazakov and A. V. Manzhirov, “Conformal Contact between Layered Foundations and Punches,” Izv. Ross. Akad. Nauk.Mekh. Tverd. Tela, No. 3, 227–240 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 512–524 (2008)].Google Scholar
  8. 8.
    A. V. Manzhirov and K. E. Kazakov, “Contact Problem for a Foundation with a Rough Coating,” Lect. Notes Eng. Comput. Sci. 2224, 877–882 (2016).Google Scholar
  9. 9.
    A. V. Manzhirov, “A Mixed Integral Equation of Mechanics and a Generalized Projection Method of Its Solution,” Dokl. Ross. Akad. Nauk 470 (4), 401–405 (2016) [Dokl. Phys. (Engl. Transl.) 61 (10), 489–493 (2016)].MathSciNetGoogle Scholar
  10. 10.
    E. Goursat, Cours d’Analyse Mathéematique, Tome III. Intéegrales Infiniment Voisines; Équations aux Dérivées Partielles du Second Ordre; Équations Intégrales; Calcul des Variations (Gauthier–Villars, Paris, 1927; GTTI, Moscow–Leningrad, 1934).Google Scholar
  11. 11.
    S. G. Mikhlin, N. F. Morozov, and M. V. Paukshto, Integral Equations in Theory of Elasticity (Izdat. St. Peterburg Univ., St. Peterburg, 1994) [in Russian].MATHGoogle Scholar
  12. 12.
    I. I. Vorovich, V. M. Alexandrov, and V. A. Babeshko, Nonclassical Mixed Problems of Elasticity (Nauka, Moscow, 1974) [in Russian].Google Scholar
  13. 13.
    V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981) [in Russian].Google Scholar
  14. 14.
    G. Szegö, Orthogonal Polynomials (Amer. Math. Soc, Providence, 1959; Fizmatgiz, Moscow, 1962).MATHGoogle Scholar
  15. 15.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover Publications, New York, 1999).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems inMechanics of the Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Moscow Technological UniversityMoscowRussia

Personalised recommendations