Mechanics of Solids

, Volume 52, Issue 4, pp 407–416 | Cite as

Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

  • G. V. Garkushin
  • G. I. Kanel
  • S. V. Razorenov
  • A. S. Savinykh


Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105–106 s−1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.


shock waves dynamic strength viscosity stainless steel deformation martensite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Morozov and Yu. V. Petrov, Dynamics of Fracture (Izdat. SPbGU, St. Petersburg, 1997; Springer, Berlin-Heidelberg-New York, 2000).Google Scholar
  2. 2.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966) [in Russian].Google Scholar
  3. 3.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  4. 4.
    G. I. Kanel, “Resistance of Metals to Spalling Fracture,” Fiz. Goreniya i Vzryva, No. 3, 77–84 (1982) [Comb. Expl. ShockWaves (Engl. Transl.) 18 (3), 329–335 (1982)].Google Scholar
  5. 5.
    E. Zaretsky and M. Kaluzhny, “Fracture Threshold and Shock Induced Strengthening of Stainless Steel,” in AIP Conf. Proc. “Shock Compression in Condensed Matter–1995”, Vol. 370 (Woodbury, New York, 1996), pp. 627–630.Google Scholar
  6. 6.
    K. Baumung, H. Bluhm, G. I. Kanel, et al., “Tensile Strength of Five Metals and Alloys in the Nanosecond Load Duration Range at Normal and Elevated Temperatures,” Int. J. Impact Engng 25, 631–639 (2001).CrossRefGoogle Scholar
  7. 7.
    A. V. Pavlenko, S. N. Malyugina, D. N. Kazakov, et al., “Plastic Deformation and Spall Fracture of Structural 12Cr18Ni10Ti Steel,” in AIP Conf. Proc. 1426 “Shock Compression in Condensed Matter–2011” (Melville, New York, 2012), Vol. 370, pp. 627–630.Google Scholar
  8. 8.
    S. F. Gnyusov, V. P. Rotstein, A. E. Mayer, et al., “Simulation and Experimental Investigation of the Spall Fracture of 304L Stainless Steel Irradiated by a Nanosecond Relativistic High-Current Electron Beam,” Int. J. Fract. 199, 59–70 (2016).CrossRefGoogle Scholar
  9. 9.
    M. A. Meyers, N. N. Thadhani, and S. N. Chang, “Martensitic Transformation Induced by Tensile Stress Pulses,” J. Phys. Colloques 49, 355–362 (1988).CrossRefGoogle Scholar
  10. 10.
    S.-N. Chang and M. A. Meyers, “Martensitic Transformation Induced by Tensile Stress Pulse in Fe–22.5wt%Ni–4wt%Mn Alloy,” ActaMetal. 36 (4), 1085–1098 (1988).Google Scholar
  11. 11.
    L. M. Barker and R. E. Hollenbach, “Laser Interferometer for Measuring High Velocities of Reflecting Surface,” J. Appl. Phys. 43 (11), 4669–4672 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    G. I. Kanel, “Spall Fracture: Methodological Aspects, Mechanisms and Governing Factors,” Int. J. Fract. 163 (1), 173–191 (2010).CrossRefMATHGoogle Scholar
  13. 13.
    G. I. Kanel, “Dynamic Strength of Materials,” Fatigue Frac. Engng Mater. Struct. 22 (11), 1011–1019 (1999).CrossRefGoogle Scholar
  14. 14.
    V. A. Ogorodnikov, E. Yu. Borovkova, and S. V. Erunov, “Strength of Some Grades of Steel and Armco Iron under Shock Compression and Rarefaction at Pressures of 2–200GPa,” Fiz. Goreniya i Vzryva 40 (5), 109–117 (2004) [Comb. Expl. ShockWaves (Engl. Transl.) 40 (5), 597–604 (2004)].Google Scholar
  15. 15.
    G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, “Influence of Structure Factors on Submicrosecond Strength of Aluminum Alloy D16T,” Zh. Tekhn. Fiz. 78 (11), 53–59 (2008).Google Scholar
  16. 16.
    G. I. Kanel, “Work of Spalling Fracture,” Fiz. Goreniya i Vzryva, No. 4, 84–88 (1982) [18 (4), 461–464 (1982)].Google Scholar
  17. 17.
    T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer, New York, 2003).Google Scholar
  18. 18.
    D. D. Koller, R. S. Hixson, G. T. Gray III, et al., “Influence of Shock Wave Profile Shape on Dynamically Induced Damage in High-Purity Copper,” J. Appl. Phys. 98 (11), 103518 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    S. J. Fensin, D. R. Jones, E. K. Walker, et al., “The Effect of Distribution of Second Phase on Dynamic Damage,” J. Appl. Phys. 120 (11), 085901 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • G. V. Garkushin
    • 1
    • 2
  • G. I. Kanel
    • 3
  • S. V. Razorenov
    • 1
    • 2
  • A. S. Savinykh
    • 1
    • 2
  1. 1.Institute for Problems of Chemical Physics of the Russian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations