Mechanics of Solids

, Volume 52, Issue 4, pp 397–406 | Cite as

Estimate of the limit displacement wave amplitude in the dynamic problem on an out-of-plane crack

Article
  • 12 Downloads

Abstract

The paper presents several results of structural fracture macromechanics used to study the integrity of continuum under impulse loading conditions. The dynamic problem on a semi-infinite steady-state crack of longitudinal shear is considered. Exact analytical expressions for the stress tensor and displacement vector components on the crack line are obtained. The values of the threshold displacement amplitude on the wave front are determined for several structural materials.

Keywords

out-of-plane crack structure-time criterion impulse loading threshold displacement jump dynamic fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Petrov, N. F. Morozov, and V. I. Smirnov, “Structural Macromechanics Approach in Dynamics of Fracture,” Fat. Fract. Engng Mat. Struct. 26 (4), 363–372 (2003).CrossRefGoogle Scholar
  2. 2.
    N. F. Morozov, Yu. V. Petrov, and V. I. Smirnov, “Estimation of the Ultimate Intensity of Pulsed Dynamic Loads in Crack Mechanics,” Dokl. Ross. Akad. Nauk 400 (3), 341–343 (2005) [Dokl. Phys. (Engl. Transl.) 50 (1), 59–61 (2005)].Google Scholar
  3. 3.
    J. F. Kalthoff and D. A. Shockey, “instability of Cracks under Impulse Loads,” J. Appl. Phys. 48 (3), 986–993 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. Shockey, D. C. Erlich, J. F. Kalthoff, and H. Homma, “Short-Pulse FractureMechanics,” Engng Fract. Mech. 23 (1), 311–319 (1986).CrossRefGoogle Scholar
  5. 5.
    H. Homma, D. A. Shockey, and Y. Murayama, “Response of Cracks in Structural Materials to Short Pulse Loads,” J. Mech. Phys. Solids 31 (3), 261–279 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    N. F. Morozov, Mathematical Problems of Crack Theory (Nauka, Moscow, 1984) [in Russian].Google Scholar
  7. 7.
    Yu. V. Petrov, A. A. Gruzdkov, and V. A. Bratov, “Structural-Temporal Theory of Fracture as a Multiscale Process,” Fizich. Mezomekh. 15 (2), 15–21 (2012) [Phys. Mesomech. (Engl. Transl.) 15 (3–4), 232–237 (2012)].Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Emperor Alexander I St. Petersburg State Transport UniversitySt. PetersburgRussia

Personalised recommendations