Mechanics of Solids

, Volume 52, Issue 4, pp 364–377 | Cite as

Thin rod under longitudinal dynamic compression

Article
  • 23 Downloads

Abstract

The paper contains a short survey of the papers on the static and dynamic longitudinal compression of a thin rod initiated by Morozov and and carried out in 2009–2016 with his direct participation. We consider linear and nonlinear problems related to the propagation of longitudinal waves in a rod and the transverse vibrations generated by these waves; parametric resonances; beating due to energy exchange between longitudinal and transverse vibrations; the rod shape evolution as the load exceeds the Euler critical value; the possibility of buckling of the rod rectilinear shape under a load less than the Euler load; and the rod dynamics at the initial stage of motion. The prospects of further investigations related to the complication of the models are considered, in particular, the problem of longitudinal impact by a body on a rod and the transverse vibrations generated by it.

Keywords

rod longitudinal impact transverse bending parametric resonances beating Euler elastics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Euler, Method for Determining Curves with the Maximum or Minimum Property (GTTI, Moscow–Leningrad, 1934) [in Russian].Google Scholar
  2. 2.
    A. S. Vol’mir, Stability of Elastic Systems (GITTL, Moscow, 1962) [in Russian].Google Scholar
  3. 3.
    Ya. G. Panovko and I. I. Gubanova, Stability and Vibrations of Elastic Systems (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  4. 4.
    M. A. Lavrentiev and A. Yu. Ishlinskii, “Dynamic Buckling Modes of Elastic Systems,” Dokl. Akad. Nauk SSSR 64 (6), 779–782 (1949).Google Scholar
  5. 5.
    A. S. Vol’mir, “Stability of Compressed Rods under Dynamic Loading,” Stroit. Mekh. Rashch. Sooruzh, No. 1, 6–9 (1960).Google Scholar
  6. 6.
    V. V. Bolotin, Transverse Vibrations and Critical Velocities, Vols. 1 and 2 (Izdat. AN SSSR, Moscow, 1951, 1953) [in Russian].Google Scholar
  7. 7.
    W. J. Hutchinson and B. Budiansky, “Dynamic Buckling Estimates,” AIAA Journal 4 (3), 527–530 (1966).Google Scholar
  8. 8.
    W. G. Knauss and K. Ravi-Chandar, “Some Basic Problems in Stress Wave Dominated Fracture,” Int. J. Fract. 27 (3–4), 127–143 (1985).CrossRefGoogle Scholar
  9. 9.
    N. F. Morozov and Yu. V. Petrov, Dynamics of Fracture (Izdat. SPbGU, St.Petersburg, 1997; Springer, Berlin-Heidelberg-New York, 2000).Google Scholar
  10. 10.
    N. F. Morozov and P. E. Tovstik, “Dynamics of a Rod on Longitudinal Impact,” Vestnik St. Peterzburg.Univ. Ser. I.Mat. Mekh. Astr., No. 2, 105–111 (2009).Google Scholar
  11. 11.
    A. K. Belyaev, D. N. Il’in, and N. F. Morozov “Dynamic Approach to the Ishlinsky–Lavrent’ev Problem,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 28–33 (2013) [Mech. Solids (Engl. Transl.) 48 (5), 504–508 (2013)].Google Scholar
  12. 12.
    N. F. Morozov and P. E. Tovstik, “Dynamics of a Rod on Short-Time Longitudinal Impact,” Vestnik St. Peterzburg. Univ. Ser. I. Mat. Mekh. Astr., No. 3, 131–141 (2013).Google Scholar
  13. 13.
    N. F. Morozov and P. E. Tovstik, “The Rod Dynamics under Longitudinal Impact,” in Book of Abstracts of International Conference on Nonlinear Dynamics in Engineering: Modeling, Analysis, and Applications, August 21–23, 2013, Aberdeen, UK, Ed. by J. Ing, Y. Liu, E. Pavlovskaya, A. Postnikov, and M. Wiercigroch (Aberdeen, 2013), p.73.Google Scholar
  14. 14.
    N. F. Morozov and P. E. Tovstik, “Transverse Rod Vibrations under a Short-Term Longitudinal Impact,” Dokl. Ross. Akad. Nauk 452 (1), 37–41 (2013) [Dokl. Phys. (Engl. Transl.) 58 (9), 387–391 (2013)].Google Scholar
  15. 15.
    A. K. Belyaev, N. F. Morozov, and P. E. Tovstik, “On Static and Dynamic Instability of Thin Rods,” in Proc. 7 All-Russia Conf. “Mechanics of Deformable Solid” (Izdat. YuFU, Rostov-on-Don, 2013), pp. 80–84 [in Russian].Google Scholar
  16. 16.
    N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Statics and Dynamics of a Rod under Axial Compression,” in ICNAAM 2014, AIP Conference Proc. (2014).Google Scholar
  17. 17.
    N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Statics and Dynamics of a Rod under Longitudinal Loading,” Vestnik Yuzhno-UralUniv. Ser. Mat.Model. Progr. 7 (1), 76–89 (2014).MATHGoogle Scholar
  18. 18.
    N. F. Morozov and P. E. Tovstik, “Dynamic Buckling of a Rod under Longitudinal Load Lower Than the Eulerian Load,” Dokl. Ross. Akad. Nauk 453 (3), 282–285 (2014) [Dokl. Phys. (Engl. Transl.) 58 (11), 510–513 (2013)].Google Scholar
  19. 19.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Buckling Problem for a Rod Longitudinally Compressed by a Force Smaller Than the Euler Critical Force,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 28–39 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 263–272 (2016)].Google Scholar
  20. 20.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik “Beating in the Problem of Longitudinal Impact on a Thin Rod,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 112–125 (2015) [Mech. Solids (Engl. Transl.) 50 (4), 451–462 (2015)].MATHGoogle Scholar
  21. 21.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and P. E. Tovstik, “Parametric Resonances in the Problem of Longitudinal Impact on a Thin Rod,” Vestnik SPbGU, Ser. 1, No. 1, 77–94 (2016).MATHGoogle Scholar
  22. 22.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and P. E. Tovstik, “Statics and Dynamics of a Rod in Longitudinal Compression,” in 7th Polyakhov Readings, Theses (St. Petersburg, 2015), p. 9 [in Russian].Google Scholar
  23. 23.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and P. E. Tovstik, “Ishlinskii–Lavrentiev Problem. Development of the Idea,” in Proc.Meeting in Fundamental Problems of Theoretical and Appllied Mechanics, Kazan, August 20-24. 2015 (KFU, Kazan, 2015), pp. 2636–2638 [in Russian].Google Scholar
  24. 24.
    B. A. Gordienko, “Buckling of Rods under Impact Loading,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 185–188 (1969).Google Scholar
  25. 25.
    A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells (Nauka, Moscow, 1972) [in Russian].Google Scholar
  26. 26.
    M. A. Il’gamov, “Dependence of Dynamic Buckling of a Rod on the Initial Conditions,” Dokl. Ross. Akad. Nauk 457 (6), 656–659 (2014) [Dokl. Phys. (Engl. Transl.) 59 (8), 385–388 (2014)].MathSciNetGoogle Scholar
  27. 27.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “The Ishlinskii–Lavrent’ev Problem at the Initial Stage of Motion,” Dokl. Ross. Akad. Nauk 463 (5), 543–546 (2015) [Dokl. Phys. (Engl. Transl.) 60 (8), 368–371 (2015)].Google Scholar
  28. 28.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “Initial Stage of Motion in the Lavrent’ev–Ishlinskii Problem on Longitudinal Shock on a Rod,” Dokl. Ross. Akad. Nauk 465 (3), 302–306 (2015) [Dokl. Phys. (Engl. Transl.) 60 (11), 519–523 (2015)].Google Scholar
  29. 29.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “The Lavrentiev–Ishlinsky Problemat the Initial Stage ofMotion,” Int. J. Engng Sci. 98, 92–98 (2016).CrossRefGoogle Scholar
  30. 30.
    N. F. Morozov, P. E. Tovstik, and P. E. Tovstik, “Again on the Ishlinskii–Lavrentyev problem,” Dokl. Ross. Akad. Nauk 455 (4), 412–415 (2014) [Dokl. Phys. (Engl. Transl.) 59 (4), 189–192 (2014)].Google Scholar
  31. 31.
    N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Stability of a Rod under Long-Term Axial Compression,” Probl. Prochn. Plastichn. 77 (1), 40–48 (2015).Google Scholar
  32. 32.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “Dynamic Behavior of a Thin Elastic Rod under the Long-Term Longitudinal Compression,” COMPDYN 2015.Google Scholar
  33. 33.
    A. K. Belyaev, Ch. Ch. Ma, and A. O. Shurpatov, “Semianalytic, Finite-Element, and Experimental Determination of Contact Force of Axial Collision of a Rod and a Punch,” Nauch. Tekhn. Vedomosti SPbGTU. Fiz.-Mat. Nauki (2017) (in Press).Google Scholar
  34. 34.
    V. A. Palmov, Vibrations of Elastoplastic Bodies (Nauka, Moscow, 1976) [in Russian].Google Scholar
  35. 35.
    A. M. Lyapunov, General Problem of Stability of Motion (GITTL, Moscow-Leningrad, 1950) [in Russian].MATHGoogle Scholar
  36. 36.
    V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].Google Scholar
  37. 37.
    N. N. Bogolyubov and Yu. A. Mitropolskii, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, Moscow, 1969) [in Russian].Google Scholar
  38. 38.
    B. D. St.-Venant, “Sur le choc longitudinal de deux barres élastiques de grosseur te de matiéres semblables uo differénts,” J.Math. (Liouville) Ser. 2 12, 237–277 (1967).Google Scholar
  39. 39.
    J. E. Sears, “On the Longitudinal Impact of Metal Rods with Rounded Ends,” Proc. Camb. Phil. Soc. 14, 257–286 (1908).Google Scholar
  40. 40.
    S. A. Zegzhda, Collision of Elastic Bodies (Izd. St. Petersb. Un-ta, St. Petersburg, 1997) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. K. Belyaev
    • 1
  • P. E. Tovstik
    • 2
  • T. P. Tovstik
    • 1
  1. 1.Institute for Problems in Mechanical Engineering of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations