Advertisement

Mechanics of Solids

, Volume 52, Issue 4, pp 353–363 | Cite as

Study of static and dynamic stability of flexible rods in a geometrically nonlinear statement

  • B. D. Annin
  • A. Yu. Vlasov
  • Yu. V. Zakharov
  • K. G. Okhotkin
Article

Abstract

We study static and dynamic stability problems for a thin flexible rod subjected to axial compression with the geometric nonlinearity explicitly taken into account. In the case of static action of a force, the critical load and the bending shapes of the rod were determined by Euler. Lavrent’ev and Ishlinsky discovered that, in the case of rod dynamic loading significantly greater than the Euler static critical load, there arise buckling modes with a large number of waves in the longitudinal direction. Lavrent’ev and Ishlinsky referred to the first loading threshold discovered by Euler as the static threshold, and the subsequent ones were called dynamic thresholds; they can be attained under impact loading if the pulse growth time is less than the system relaxation time. Later, the buckling mechanism in this case and the arising parametric resonance were studied in detail by Academician Morozov and his colleagues.

In this paper, we complete and develop the approach to studying dynamic rod systems suggested by Morozov; in particular, we construct exact and approximate analytic solutions by using a system of special functions generalizing the Jacobi elliptic functions. We obtain approximate analytic solutions of the nonlinear dynamic problem of flexible rod deformation under longitudinal loading with regard to the boundary conditions and show that the analytic solution of static rod system stability problems in a geometrically nonlinear statement permits exactly determining all possible shapes of the bent rod and the complete system of buckling thresholds. The study of approximate analytic solutions of dynamic problems of nonlinear vibrations of rod systems loaded by lumped forces after buckling in the deformed state allows one to determine the vibration frequencies and then the parametric resonance thresholds.

Keywords

flexible rod geometric nonlinearity static stability dynamic stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Popov, Nonlinear Static Problems for Thin Beams (OGIZ, Leningrad–Moscow, 1948) [in Russian].Google Scholar
  2. 2.
    E. P. Popov, Theory and Calculation of Flexible Elastic Rods (Nauka, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    S. V. Levyakov, “States of Equilibriumand Secondary Buckling of a Straight Rod Loaded by an Axial Force,” Zh. Prikl. Mekh. Tekhn. Fiz 42 (2), 153–159 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (2), 321–327 (2001)].MATHGoogle Scholar
  4. 4.
    S. P. Timoshenko, Stability of Rods, Plates, and Shells (Nauka, Moscow, 1971) [in Russian].MATHGoogle Scholar
  5. 5.
    A. S. Vol’mir, Stability of Deformable Systems (Nauka, Moscow, 1967) [in Russian].Google Scholar
  6. 6.
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1989) [in Russian].CrossRefGoogle Scholar
  7. 7.
    Ya. G. Panovko and I. I. Gubanova, Stability and Vibrations of Elastic Systems (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  8. 8.
    M. A. Lavrent’ev and A. Yu. Ishlinsky, “Dynamic Buckling Modes of Elastic Systems,” Dokl. Akad. Nauk SSSR 64 (6), 779–782 (1949).Google Scholar
  9. 9.
    L. Collatz, Eigenvalue Problems with Engineering Applications (Akad. Verlag, Leipzig, 1963; Fizmatgiz, Moscow, 1968).Google Scholar
  10. 10.
    L. I. Shkutin, “Numerical Analysis of the Branched Forms of Bending for a Rod,” Zh. Prikl. Mekh. Tekhn. Fiz. 42 (2), 141–147 (2001) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 42 (2), 310–315 (2001)].MATHGoogle Scholar
  11. 11.
    Yu. V. Zakharov and K. G. Okhotkin, “Nonlinear Bending of Thin Elastic Rods,” Zh. Prikl. Mekh. Tekhn. Fiz. 43 (5), 124–131 (2002) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 43 (5), 739–744 (2002)].MATHGoogle Scholar
  12. 12.
    Yu. V. Zakharov and K. G. Okhotkin, “Elliptic Functions and Problems of Bending of Thin Rods and Plates,” Vestnik KrasGU, No. 3, 44–52 (2004).Google Scholar
  13. 13.
    A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods for Solving Nonlinear Equations ofMathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  14. 14.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 3 (McGraw Hill, New York, 1955; Nauka, Moscow, 1967).MATHGoogle Scholar
  15. 15.
    E. L. Ince, “The Periodic LaméFunctions,” Proc. Roy. Soc. Edinburgh 40, 47–63 (1940).CrossRefMATHGoogle Scholar
  16. 16.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Buckling Problem for a Rod Longitudinally Compressed by a Force Smaller Than the Euler Critical Force,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 28–39 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 263–272 (2016)].Google Scholar
  17. 17.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “Ishlinsky–Lavrent’ev Problem. Development of the idea,” in Proc. XI All-Russia Meeting in Fundamental Problems of Theoretical and Appllied Mechanics, Kazan, August 20–24. 2015 (KFU, Kazan, 2015), pp. 2636–2638 [in Russian].Google Scholar
  18. 18.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “The Ishlinsky–Lavrent’ev Problem at the Initial Stage of Motion,” Dokl. Ross. Akad. Nauk 463 (5), 543–546 (2015) [Dokl. Phys. (Engl. Transl.) 60 (8), 368–371 (2015)].Google Scholar
  19. 19.
    N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “Initial Stage of Motion in the Lavrent’ev–Ishlinsky Problem on Longitudinal Shock on a Rod,” Dokl. Ross. Akad. Nauk 465 (3), 302–306 (2015) [Dokl. Phys. (Engl. Transl.) 60 (11), 519–523 (2015)].Google Scholar
  20. 20.
    N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Stability of a Rod in Long-Term Axial Compression,” Probl. Prochn. Plastichn. 77 (1), 40–48 (2015)Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • B. D. Annin
    • 1
  • A. Yu. Vlasov
    • 2
  • Yu. V. Zakharov
    • 2
  • K. G. Okhotkin
    • 3
    • 4
  1. 1.Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Siberian State Aerospace UniversityKrasnoyarskRussia
  3. 3.Academician M. F. Reshetnev Information Satellite SystemsZheleznogorsk, Krasnoyarsk regionRussia
  4. 4.Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences,”KrasnoyarskRussia

Personalised recommendations